Simulation of the 2001 Planet-Encircling Dust Event with the NASA/NOAA Mars General Circulation Model

R. J. Wilson

NOAA/Geophysical Fluid Dynamics Laboratory R.M. Haberle, John Noble, Alison Bridger, Jim Schaeffer NASA/Ames Research Center Jeff Barnes Oregon State University Bruce Cantor Malin Space Science Systems

Objective

Understand the role of large-scale dynamics in the onset and evolution of the 2001 planet encircling dust event (PEDE)

Key Data Sets

- MOC daily global maps (Mike Malin and Bruce Cantor)
- TES temperature/opacity data (Mike Smith)
- Mars Horizon Sensor Assembly (MHSA) (Terry Martin & Jim Murphy)

Smith et al. (2002); Straussberg et al. (2005); Cantor (2007)

Approach

- Interpret dynamics using a Mars Global Climate Model (MGCM) to explore the possible structure of the atmospheric circulation and the 3-D dust field.
 - Force the model with an evolving column opacity field derived from a synthesis of the TES observations and MOC imagery.
 - Understanding of the evolution of the 3-D dust field and the surface stresses that may be associated with storm growth via dust lifting
 - Compare simulated temperatures with available TES retrievals

MGCM Modeling

GFDL MGCM

- FV dynamical core with cubed-sphere geometry
- L28 with 2° x 2° resolution
- Ames radiation: 2 stream with correlated-k gaseous absorption

"Dust Assimilation"

Goal: A realistic vertical and meridional variation of dust in simulations with prescribed dust opacity

The MGCM predicts the evolution of a 3D dust distribution(s) subject to the constraints of the available MGS TES dust column opacity observations.

Dust is added/removed from the boundary layer as needed to fit the observed column dust opacity

The dust particle size spectrum plays a significant role in the vertical and meridional extent of the resulting opacity field.

Currently using 3 dust tracer fields.

Annual Cycle Simulation with "Assimilated" Dust

Latitude-Pressure Section: L_s = 130° Zonal-Mean dust mixing ratio (shading) and Temperature: (contour @10 K)

Dust distribution is similar to that derived from MCS retrievals;

Temperature in good agreement with TES

Latitude-Longitude column dust opacity (normalized)

Evolution of Zonally-Averaged Equatorial Temperature

(daytime TES observations)

Precursor phase: Sequence of localized dust events in Hellas vicinity Storm initiation in Hellas at L_s = 184.7° Regional development in Syria/Claritas at L_s = 189.6° Planet-encircling by L_s = 192°

Evolution of "Diurnal Tide Amplitude" and Zonal Mean Temperature

Tide = $(T_{2pm} - T_{2am})$; (shading) Temperature (contoured at 10 K intervals; 200 K contour heavy line)

MOC Global Map $L_s = 187.5^{\circ}$

Amplification of Zonal Wave 1: MHSA Temperatures

Depth Weighted temperature ~0.5 hPa

Latitude 60°S - 55°S

Unlike TES, no data gap at L_s = 190-191

MOC Wide Angle Map L_s= 187.51-188.09

Available TES opacity retrievals: $low \rightarrow high$

Longitude 0-180 E

MOC Wide Angle Map $L_s = 192$

MOC Wide Angle Map $L_s = 192$

Zoom on Tharsis/Solis Planum/Syria/Thaumasia

Synthetic Dust Column Opacity Map L_s= 187.5°

Gridded TES Column Opacity

Revised TES Column Opacity

Simulated U, T, Opacity

TES 2am and 2pm Temperature vs MGCM

 T_{15} = depth weighted temperature centered at 0.5 mb

TES Eddy Temperature 60°S 3.7 mb

Evidence for traveling wave activity during the precursor phase

*Fast Fourier Spectral Mapping method: Jeff Barnes

Similar wave activity is found in the MGCM simulation

Eddy winds significantly augment winds along southern and western rims of Hellas basin

Surface Stress in the SW Corner of Hellas

Pulses of high stress (black) at intervals of 2 to 4 sols.

Peak stresses when the traveling waves are in sync with the nighttime diurnal slope winds

Red curve shows scaled Tsfc to indicate the phase of the diurnal cycle

Afternoon (2 pm) Dust Mixing Ratio and Temperature

T e m p e r a t u r e contoured at 10 K intervals

Diurnal Tide / Hadley Circulation ---> Strong convergence and upward motion in the tropics

C45L28 (2°x2°)

190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

2 pm Winds (top); Diurnal Maximum Surface Stress (bottom)

1400 Local Time Winds (1 km agl) Wind magnitude (shaded)

Daily maximum stress Nm⁻² x 1.0³

2 pm Winds (top); Diurnal Maximum Surface Stress (bottom)

 $L_{s} = 186.6$ 10 -10 -20 -30 -40-50 -60 -70 0 10 20 30 40 50 10 0 -10 -20--30--40 -50--60--70+ 0 60 120 180 240 300 360 50 0 10 20 30 40

 $L_{s} = 190.8$

The evolution of tide wind amplitude

 \sim 300 m above ground level

Summary

- Many components of the general circulation appear to play a role:
 - Eastward traveling baroclinic eddies
 - Quasi stationary waves
 - Hadley circulation
 - Thermal Tides
- Understanding the cause of lifting in Claritas remains a key issue
 - Tide amplification appears to be important.
- More work remains in improving and analyzing the MGCM simulations:

- Further refinement of the dust opacity estimates.

