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Q3) Derive an expression for the phase speed of a sound wave, expanding on Holton’s 

procedure in section 7.3 

Sound waves are longitudinal waves which are characterized by the fact that the particle 

motion they cause is always parallel to the direction of propagation.  This class of waves is 

distinct from transverse waves which are classified by the fact that particle motion is orthogonal 

to propagation direction.  Therefore, in deriving expressions for longitudinal waves, the 

simplification that there is only motion in the x-direction may be made, which implies that the v 

and w components of the momentum equations equal 0.   Friction and the Coriolis force can also 

be neglected, thereby producing the following simplified momentum equation: 
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The mass continuity can be simplified to: 
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Assuming that the flow is adiabatic and that Q = 0, the thermodynamic energy equation 

simplifies to: 
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resulting in three equations with three unknowns u, p,  and !. Since ", potential temperature, 

can be expressed as a function of p and !,  it can be eliminated in (3) by substituting the terms 

which equal  T in the ideal gas law,  
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into Poisson’s equation, 
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thereby producing the following equation for potential temperature: 
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After substituting the right hand side (RHS) of  (6) into (3) and differentiating, !  is eliminated 

from (3), producing a new form of the thermodynamic energy equation (8) which contains the 

two dependent variables,  p and !.  
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Substituting R = c

p
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Recognizing that !  =
c
p

c
v

 and substituting above, the thermodynamic energy equation now has the form:
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!  can be eliminated in the continuity equation (2) by dividing both sides by its reciprocal, 

resulting in 

 
1

!

D!

Dt
+
"u

"x
= 0 , (9) 

 

and by recognizing from the following differentiation rule   d lna
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=
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that the density term of (8) is equivalent to the density term in (9) when rewritten in the 

following form: 
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Therefore the RHS of (8) can be replaced with !u
!x

,  producing:  
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The new forms of the governing equations can now be linearized by decomposing the 

dependent variables into their basic state and perturbation components: 
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Substituting (12) into (1) and expanding using the simplified definition of the total derivative,  
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which is the linearized version of the u-momentum equation. 
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After multiplying by reciprocals, the perturbation method produces the following linearized form  

of the thermodynamic energy equation: 
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Provided that  
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using binomial expansion.   Recognizing that binomial series of the form  1+ x( )
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converge when  x < 1 Stewart, 2003( ),   and using the expansion definition for a binomial series 

below, 
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it can be seen that the expanding terms will increasingly approach zero as the factorials in the 

denominator increase.   Therefore,   1
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neglected. Thus, 
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 becomes zero upon differentiating since the  

mean component,  p,  is constant and does not vary in the x-direction 

i.e.  
d
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c( ) = 0,   where c  is mean component and !  constant

"
#$

%
&'

.  Thus the linearized form  of 

the u-momentum equation (14) becomes: 
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Holton defines the fundamental assumptions of Linear Perturbation Theory as follows: 



•  Basic state variables must themselves satisfy the governing equations when the 

perturbations are set to zero. 

• The perturbation fields must be small enough so that all terms in the governing 

equations that involve products of perturbations can be neglected. 

We can now further simplify (16) 
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by differentiating and applying the above assumptions to arrive at the u-momentum  

linear perturbation equation (16): 
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The above techniques can be applied to linearize (13) and produce the thermodynamic 

linear perturbation equation (17): 
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Holton eliminates !u by operating on (17) with 
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Apply chain rule and linearization rules: 
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Expand 1st term in (18).  Holton notes that the squared differential operator in the first 

term expands in the usual way, i.e.:  
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Rewrite (18) with above expanded term: 
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Add (19) and (20) to eliminate !u  
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Rewrite 1st three terms on LHS in compressed form {as in (19)} 
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(21)  is a general form of the standard wave equation.   

The three simplified governing equations (1), (2), and (3) which had three unknowns, 

u, p, and !, were linearized with the perturbation method and reduced down to one equation 

(21) with one unknown, !p .   Therefore solving for !p  in (21) alows one to subsequently solve 

for !u and !" .  

Since (21) is a general form of the standard wave equation, one may assume/test that 

there is solution in the general form: !p = Ae
ik x"ct( ) , where only its real component,  
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would have physical meaning.  (22) represents a sinusoidal wave.  

Test the solution by substituting it into (21): 
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Differentiate each term from LHS of (23): 
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Therefore, recombining the four tems above produces: 
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Using the ideal gas law (4), (24) can be written in the form 
 

 c = u ± ! RT  (25) 

 
Holton states that (24) is a solution to (21) if the phase speed, c, satisfies (24).   This can be 

tested using values for standard conditions.    

c = u ± ! RT

u =  10 m s-1

! =
cp

cv
= 1.4 for dry air

R = Rd = 287.05 J kg-1 K-1

T = 293K

c = u ± ! RT "10 m s-1
± 1.4( ) 287.05 J kg-1 K-1( ) 293K( ),

 N m kg–1 K–1  K#
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c = 10 m s–1
± 343 m s–1

Thus, the units are correct and the value arrived at is precisely the speed of sound when compared 

with various reference values.

 

 
 
 


