RADIATION: $\lambda = \frac{c}{v}$ $v = \text{frequency } \left[s^{-1} \right]$ $\text{Wave Number } \frac{v}{c} = \frac{1}{\lambda}$ **Plank's Law:** $E_{\lambda}^* = \frac{c_1}{\lambda^5 \lceil \exp(c_2/\lambda T) - 1 \rceil} \begin{vmatrix} c_1 = 3.74 \times 10^{-16} \text{ W m}^2 \\ c_2 = 1.44 \times 10^{-2} \text{ m} \text{ °K} \end{vmatrix}$ **Radiance**(L) & Irradiance(E): $L = \frac{dE}{\cos\theta d\varpi}$, $E = \int_0^{2\pi} L\cos\theta d\varpi$ $\bigg|_{\text{zenith } \angle}^{\theta=}$ **Isotropic Radiation :** $E = \pi L$ Total Irradiance: $E = \int_{\alpha}^{\infty} E_{\lambda} d\lambda \Rightarrow |E| = \int_{\alpha}^{\infty} E_{\lambda} d\lambda$ Irradiance of Planetary rad emitted to space : $E = (1 - A) \cdot \overline{E}_s / 4$ **Stephan Boltzman Law**: $E^* \equiv \sigma T^4 \quad \left[\text{W} \cdot \text{m}^2 \right] \quad \left| \begin{array}{l} \bullet \text{ Radiance emitted (by a black body (BB)) per unit area} \\ \text{Wien's Displacement Law}: \quad \lambda_{\text{m}} = \frac{\alpha}{T} \quad \left| \begin{array}{l} \alpha = 2898 \ \mu\text{m K} \\ \lambda \text{ of peak transmission for BB at } T \end{array} \right|$ Inverse Square Law: $\frac{\overline{E}_s}{E_0} = \left(\frac{R_{sun}}{R_{Earthorbit}}\right)^2 \left[\mathbf{W} \cdot \mathbf{m}^{-2} \right]$ Kirchhoff's Law: $a_1 = \varepsilon$ Absorbtivity, Reflectivity, Transmissivity: $a_{\lambda} + r_{\lambda} + \tau_{\lambda} = 1$ For a black body, $r_{\lambda} = \tau_{\lambda} = 0$, and $a_{\lambda} = 1$ for all λ (spectral/monochromatic absorptance, reflectance, transmittance) Clouds: SW: high reflectivity, low absorptivity. LW: high abs & high emis $a_{\lambda} = \varepsilon_{\lambda}$ Single scattering Albedo : $\varpi = k_s/k$ Beer's Law: $da_{\lambda} \equiv -\frac{dE_{\lambda}}{E} = -k_{\lambda}\rho \sec\theta dz \implies \ln E_{\lambda\infty} - \ln E_{\lambda} = \sec\theta \int_{z}^{\infty} k_{\lambda}\rho dz \implies$ $E_{\lambda} = E_{\lambda \infty} e^{-\sigma_{\lambda}}$ where $\sigma_{\lambda} = \sec \theta \int_{-\infty}^{\infty} k_{\lambda} \rho \, dz$ $u = \int_{0}^{x} \rho dx$ | mass of absorbing gas in a unit area **Optical Thickness/Depth :** $| | k_{\lambda} = \text{absorption coefficient of layer } [\text{m}^2 \text{kg}^{-1}]$ $k_{\lambda}u \equiv \int_{0}^{x} k_{\lambda} \rho_{c} dx$ [unitless] $\rho_{c} = \text{density of absobing constituent}$ Aerosols: 0.01 - 1, mean: 0.1; Clouds:10+ Aerosols: 0.01 - 1, mean: 0.1; Clouds: 10+

Monochromatic/Spectral Transmissivity: $\tau_{\lambda} = \frac{L_{\lambda}}{L_{\lambda 0}} = e^{-k_{\lambda}u}$ Can be used for radiance or irradiance, independent of direction Monochromatic/Spectral Absorptivity : $a_{\lambda} = 1 - e^{-k_{\lambda}u}$ **Radiative Equilibrium :** Receive on a cross section (πr^2) , emit from the whole $(4\pi r^2)$ Rad In = Rad out $\Rightarrow a_{SW} \cdot E_S \cdot \pi r^2 + a_{IW} \sigma_{SB} T_e^4 \pi r^2 = \sigma_{SB} T_B^4 4 \pi r^2$ $(1-A)E_p$ | 1/4 | Where T_p = equilibrium temp of a planet

 $\begin{bmatrix} a_p & b_p & b_p \end{bmatrix}$ and E_p = the solar constant for that planet **Spectral Curves**: Although the irradiance absorbed by the earth & atm is closely equal to that emitted, and although both distributions are very roughly black in character, the

Satellites: $\varpi = 2\pi \left[1 - \frac{\left(2Rh + h^2 \right)^{3/2}}{R+h} \right]$ | Shows that ϖ is a function of height only. Derived from Pythagorean & Solid \angle eqns.

spectral curves of absorbed & emitted radiation overlap almost not at all.

 $c = \text{speed of light} = 2.998 \times 10^8 \,\text{m s}^{-1}$ $f = \text{Radiant flux [W] or } \text{ } \text{J s}^{-1}$ $E = F = \text{Irradiance } \left[\text{W m}^{-2} \right] \text{ or } \left[\text{cal m}^{-2} \text{ min}^{-1} \right]$ $E_{\lambda} = \text{Monochromatic Irradiance/Emittance} \left[\text{W m}^{-2} / \mu \text{m} \right]$ $\overline{E}_s = S = \text{Solar constant} = 1370 \text{ W m}^{-2}$ $L = I = \text{Radiance (AKA Intensity)} \left[\text{W m}^{-2} \text{ sr}^{-1} \right]$ $k_{\lambda} = k_{a} = k_{\lambda} (T, p, \text{composition}) = \text{Absorption coefficient } \lceil \text{m}^{2} \text{ kg}^{-1} \rceil$ k_s = scattering coefficient; $k_s = N\pi r^2 Q_{sca.} \lceil m^2 \rceil$ per 1 molecule: n =refractive index of particle $u = \text{density weighted path length; mass in unit column} = \sec \theta \int \rho \, dz \left[\text{kg m}^{-2} \right]$ Q_{sca} = Scattering efficiency factor [unitless] T_{e} = Effective Radiation Emission Temperature $x = \text{size parameter } 2\pi r/\lambda$ $\varepsilon = \text{Emissivity} \equiv E_{\lambda} / E_{\lambda}^*$; GB: $E / E^* = E / \sigma T^4$; $0 < \varepsilon < 1$ θ = Zenith angle ϕ = Latitude $\sigma_{\lambda} = \sec \theta k_{\lambda} u = \text{Optical depth/thickness}$ [unitless] $\sigma_{\lambda} = \sec \theta k_{\lambda} \left[\rho \, dz = \text{Optical depth/thickness [unitless]} \right]$ $\sigma_{SR} = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ τ_{λ} = Monochromatic Transmissivity $\equiv E_{\lambda}/E_{\lambda_{\infty}} = e^{-\sigma_{\lambda}} = e^{-k_{\lambda}u}$

 a_{λ} = Monochromatic Absorptivity = $1 - \tau_{\lambda} = 1 - e^{-\sigma_{\lambda}} = 1 - e^{-k_{\lambda}u}$

ABSORBTION λ dependent

N₂O: 4-5 μ m & ~7 μ m; CH₄: ~3 μ m & ~7 μ m; O₂: 0 – 0.3 μ m; O₃: 9 – 10 μ m; $H_2O: \sim 1-3\mu m, 5-7\mu m, 12-20\mu m; CO_2: \sim 2\mu m \& 4\mu m; 13\mu m-20\mu m$

Atm window: 8-11 µm

SCATTERING Key: size of particle to wavelength of light

$$k_s = N\pi r^2 Q_{sca}$$
 | $N\pi r^2$ = Total Geometric cross section
 $N = \#$ of molecules

$$Q_{s}$$

2 - 14Aerosols

100 Cloud

I) Rayleigh: $2r/\lambda = 0.1$ (Air molecules), Scatterers are small compared to λ . Typically $r < 0.05 \mu m$. Rayleigh also applies to scattering of radar beams by raindrops, where λ is 3-10cm & r is a few mm. $k_c \approx 1/\lambda^4$

Strongly λ dependent; shorter λ scatter most, \therefore blue light scatters more than red Assume isotropic sphere; medium's refractive index =1

$$k_s = N\pi r^2 \frac{128\pi^4 r^4}{3\lambda^4} \left(\frac{n^2 - 1}{n^2 + 2}\right)^2 \text{ since: } Q_{sca} = \frac{8}{3}x^4 \left(\frac{n^2 - 1}{n^2 + 2}\right)^2 \& \boxed{x = \frac{2\pi r}{\lambda}}$$

$$\boxed{k_s = \frac{8\pi^3}{3\lambda^4 N_0^2} \left(n_0^2 - 1\right)^2 \frac{6 + 3\rho_n}{6 - 7\rho_n}} \begin{vmatrix} k_s \text{ (per molecule) } \left[\text{cm}^2\right] \\ \text{Scattering cross section} = k_s \cdot N \left[\text{cm}^{-1}\right]$$

Optical depth: $\tau = \text{Scattering cross section} \lceil \text{cm}^{-1} \rceil \cdot \Delta u \lceil \text{cm} \rceil = \tau \lceil \text{unitless} \rceil$

II) Mie $\Rightarrow 0.1 < 2r/\lambda < 100$ (Dust, haze, smoke); not λ dependent

 k_s (per molecule) = $\pi r^2 Q_{sca} \left[\text{cm}^2 \right]$

Scattering Cross Section = $N\pi r^2 Q_{sca}$ [cm⁻¹]

$$Q_{sca}\left(x\to\infty\right) = 1 + \left|\frac{m-1}{m+1}\right| \qquad \qquad x = \frac{2\pi r}{\lambda}$$

Optical depth: $\tau = \text{Scattering cross section} \left[\text{cm}^{-1} \right] \cdot \Delta u \left[\text{cm} \right] = \tau \left[\text{unitless} \right]$

III) Geometric Optics $\Rightarrow 2r/\lambda > 100$ (Cloud droplets, ice)

NOTE: MAKE SURE YOU SQUARE THE RADIUS!

Optical depth is much greater for haze than for air molecules. Even though $N_{haze} \ll N_{air}$, Scat X section (haze) \gg Scat X sect (air) & :. $\tau_{haze} \gg \tau_{air}$

SOLID ANGLE: $\varpi = \frac{A}{r^2} \left[\text{unitless, like rad } \right] = \text{ratio of the area of a sphere intercepted by the cone to the square of the sphere's radius.}$

Used to determine radiation flux passing thru a unit area. In special case $d\overline{\omega}_{\theta\theta} = \sin\theta \, d\phi \, d\theta$ that the vert. axis is an axis of circular symmetry $\Rightarrow d\overline{\omega}_{\theta\theta} = 2\pi \sin\theta \, d\theta$

$$\Rightarrow \varpi = 2\pi \int_0^{\theta} \sin\theta \, d\theta \Rightarrow \boxed{\varpi = 2\pi (1 - \cos\theta)}$$

PHYSICAL CONSTANTS & QUANTITIES:

Sun: $T_{sum} = 5780 \,\text{K}$; $R_{sum} = 6.96 \times 10^8 \,\text{m}$; Sun's radiant flux: $3.9 \times 10^{26} \,\text{W}$

 $3.9 \times 10^{26} \text{ W}/4\pi r^2 = E_{sum} = E_0 = 6.328 \times 10^7 \text{ W m}^{-2}$; Can treat as || beam rad, don't $\int d\varpi$

Solar radiation range: λ : $\left(10^{-14}\text{m} \leftrightarrow 10^{10}\text{m}\right)$; $\lambda_{\text{max emiss}}$: $0.475\mu\text{m}$; ν : $\left(10^{22}\text{ s}^{-1} \leftrightarrow 10^{-2}\text{ s}^{-1}\right)$

Electromagnetic Rad: λ (m): AM radio: 100, TV: 1, Microwave: 10, IR: 10^{-6} , vis: $4-7.7 \times 10^{7}$ (Violet: $0.4 \mu m$, Red: $0.77 \mu m$), UV: 10^{-7} , X-rays: 10^{-9}

 \uparrow T \Rightarrow $\downarrow \lambda \& \uparrow$ in radiation emitted & \uparrow in energy/wave or photon.

Earth: $R_{Earth} = 6.35677 \times 10^{6} \text{ m}; R_{earth} = 1.497 \times 10^{11} \text{ m}; T_{Earth's} = 255 \text{ K (no atm.)};$

CONVERSION FACTORS

Temperature:

$$(9/5 \times {}^{\circ}\text{C}) + 32 = {}^{\circ}\text{F}; ({}^{\circ}\text{F} - 32) \times 5/9 = {}^{\circ}\text{C}; K = {}^{\circ}\text{C} + 273.15$$

Area:

 $1 \text{ cm}^2 = 10^{-4} \text{ m}^2 \iff 1 \text{ m}^2 = 10^4 \text{ cm}^2$

Volume: V = 1 liter = 10^3 cm³ = 10^{-3} m³

 $1 \text{ m}^3 = 10^6 \text{ cm}^3 \iff 1 \text{ cm}^3 = 10^{-6} \text{ m}^3$

Force:

 $1 \text{ Dyn} = 10^{-5} \text{ N} \iff 1 \text{ N} = 10^{5} \text{ Dyn}$

Energy:

1 calorie = 4.18684×10^7 erg = 4.18684 Joule

1 Joule = 10^7 erg \iff 1 erg = 10^{-7} J

 $1 \text{ J gm}^{-1} = 1000 \text{ J kg}^{-1}$

Pressure:

 $1atm = 1013.25mb = 1013.25hPa = 101.325kPa = 1.01325 \times 10^{5}Pa = 1.01325 bar$

 $1 \text{ hPa} = 100 \text{ Pa}; \quad 1 \text{ mb} = 10^2 \text{ Pa}$

Density:
$$\rho = \frac{m}{p}$$
; $\alpha = \frac{V}{m}$; $\Rightarrow V = \alpha m$; $\therefore \rho = \frac{m}{\alpha m} = \frac{1}{\alpha}$; $\Rightarrow \alpha = \frac{1}{\rho}$

 $\rho_{w} = 1 \text{gm} \cdot \text{cm}^{-3}; \implies \alpha_{w} = 1 \text{cm}^{3} \text{gm}^{-1} = 10^{-3} \text{m}^{3} \text{kg}^{-1} = \text{constant}$ $1 \text{ gm cm}^{-3} = 1000 \text{ kg m}^{-3}$

Ouantities and units

Quantity Derived unit MKS MKS Derived unit CGS CGS

 $m^3 \cdot kg^{-1}$ Specific Vol α $kg\cdot \overset{\smile}{m}\cdot sec^{-2}$ Newton [N] Force

Force gm · cm · sec⁻²

 $N \cdot m^{-2}$ OR $kg \cdot m^{-1} \cdot sec^{-2}$ Barye (ba) $N \cdot m$ OR $kg \cdot m^2 \cdot sec^{-2}$ Erg Pressure Pascal [Pa] Dyne cm⁻² Pressure

Joule [J] Energy

Dyne · cm J·sec⁻¹ OR kg·m²·sec⁻¹ Power Watt [W]

The ratio between a CGS unit and the corresponding MKS unit is usually a power of 10. A newton accelerates a mass 1000 times greater than a dyne does, and it does so at a rate

100 times greater, so there are $100\ 000 = 10^5$ dynes in a newton. peta (P) 10¹⁵, tera (T) 10¹², giga (G) 10⁹, mega (M) 10⁶, kilo (k) 10³, hecto (h)10²,

deca (da) 10¹, deci (d) 10⁻¹, centi (c) 10⁻², milli (mm) 10⁻³, micro (m)10⁻⁶, nano (n) 10⁻⁹, pico (p) 10⁻¹², femto (f) 10⁻¹⁵