
NUMERICAL MODELING REVIEW

COMPLEX NUMBERS
z = x + iy
x = r cos θ( ); y = r sin θ( )

r = x2 + y2 ; θ = arctan y
x

⎛
⎝⎜

⎞
⎠⎟

eiθ = cosθ + i sinθ  

x + iy = reiθ , r = x2 + y2 , θ = tan−1 y
x

⎛
⎝⎜

⎞
⎠⎟ = sin

−1 y
r

⎛
⎝⎜

⎞
⎠⎟

x + iy( )n = reiθ( )n = rneinθ = rn cosnθ + i sinnθ( )

 

 

I) LINEAR DIFFERENTIAL EQUATIONS
A DE is an equation of the form: L y( ) = f ,   where L  is a differential operator
and f  is a function of the independent variables.  The operator, L, is said to be 
linear if L α y1 + βy2( ) = αL y1( ) + βL y2( )  for any 2 functions y1  & y2  and 2 
scalars α  & β.   
• ODE ⇒ there is 1 independent variable
• PDE ⇒ thhere are 2 or more.
• Homogenous ⇒  If the operator is linear and the function f  is identically 0 

Theorem 1:  A linear combination of solutions is also a solution
Theorem 2: ...
∴  Solutions of linear DEs can be constructed by summation

A)   LINEAR ODEs

dy
dt

= y

y 0( ) = y0

⎫
⎬
⎪

⎭⎪

dy
y
= dt→ dy

y∫ = dt∫ → ln y = t + c→ eln y = et+c →

→ y t( ) = y0e
t

dy
dt

= −ky

y 0( ) = y0

⎫
⎬
⎪

⎭⎪

dy
y
= −kdt→ dy

y∫ = −k dt∫ → y t( ) = y0e
−kt⎧

⎨
⎪

⎩⎪

B) LINEAR PDEs
1. Two variables
a. Linearized advection equation (AKA one-way eqn)

∂Q
∂t

+ c ∂Q
∂x

= 0 ⇒    
 Q x, t( ) = f x − ct( )  is the general solution

To get unique soluton, IC must be specified, such as: Q x, 0( ) = f x( )
Note: solution is in the form of a traveling disturbance, initial disturbance 
travels to the right if c > 0 or to the left if c < 0 w/out change of shape.
II) LINEAR DIFFERENCE EQUATIONS
Difference equations are essentially discrete analogues to differential eqns.
In the case of difference eqns, the unknown is not a function, but a sequence.
(Actually, a sequence is a function whose domain consists of integers). 
• Arithmetic Seq.:  yn+1 − yn = a, n = 0,1,2,... Divergent except when a = 0

• Geometric Seq.:  yn+1 = λyn , n = 0,1,2,... ⇒ Solution is yn = λn y0

→ λ < 1 ⇒  sequnce converges to 0
→ λ > 1 ⇒  sequence diverges

General kth  order linear, homogenous difference equation w/ const. coeff:

ak yn+k + ak−1yn+k−1 + ...+ a0yn = 0, n = 0,1,2,... → Soln of form: yn = aλ
n

Solutions may be found assuming that yn = aλ
n ,   and then solving the roots

of the resulting polynomial eqn.  If there are k  distinct roots, λ1,...,λk ,  then

yn = c1λ1
n + ckλk

n  is the general solution

 

NUMERICAL METHODS
method is stable/unstable;    solution is bounded/unbounded
Review:  Waves

P s cycle-1⎡⎣ ⎤⎦ = period = time for 1 cycle. P = 1
f

f Hz = cycles s-1⎡⎣ ⎤⎦ = # of cycles
in a unit time. (Inverse time)

f = 1
P

ω rad s-1⎡⎣ ⎤⎦ = angular frequency. ω = 2π f ⇔ ω = 2π
P

 

 
 
 
 
 



Oscillation Equation:  ∂y
∂t

= iω y, y 0( ) = y0 ⇒ y = y0e
iwy

y = y0 cosωt + i sinωt( )   Period: 2π
ω

;

2 level schemes: seek solutions of the form yn = λn y0

1) Euler's yn = 1+ iωΔt( )n y0 λ = 1+ iωΔt

yn+1 − yn
Δt

= iω yn ⇒ yn+1 = 1+ iωΔt( )yn ⇒ yn = 1+ iωΔt( )n y0

We want the absolute value to see if it blows up: yn = 1+ iωΔt( )n y0

Note:  x + iy = x2 + y2 ⇒ 1+ iωΔt = 1+ω 2Δt 2  ω 2Δt 2  is 
 always > 0

• unconditionally unstable

2) Backward yn =
1

1− iωΔt
⎛
⎝⎜

⎞
⎠⎟ y0 λ = 1

1− iωΔt

yn+1 − yn
Δt

= f (yn+1 )  → yn+1 =
1

1− iωΔt
⎛
⎝⎜

⎞
⎠⎟ yn → yn =

1
1− iωΔt

⎛
⎝⎜

⎞
⎠⎟ y0

λ = 1
1− iωΔt

= 1
1− iωΔt

&∴always <1 decays exponentially

3) Trapezoidal Implicit

yn+1 − yn
Δt

= iω yn + yn+1

2
⎛
⎝⎜

⎞
⎠⎟
⇒ yn = λn y0 , λ =

1+ iωΔt
2

1− iωΔt
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

λ = e2iα ,  α = arctan ωΔt
2

⎛
⎝⎜

⎞
⎠⎟

LF  yn+1 = yn−1 + 2Δtf yn( ) ⇒  yn+1 = yn−1 + 2iωΔtyn

• seek solutions of the form yn = r
n

• subst:   rn+1 = rn−1 + 2iωΔt( ) rn( ),  divide by lowest power: rn−1

 r± = iωΔt ± 1−ω 2Δt 2 ⇒ Gen Soln: yn = ar+
n + br−

n

Case 1 :  ωΔt > 1

 r± = iωΔt ± −1( ) ω 2Δt 2 −1( ) ⇒  r± = iωΔt ± i ω 2Δt 2 −1( ) ⇒
r± = i ωΔt ± ω 2Δt 2 −1( )( )   Both #s are on the Img axis.   

Since i = 1, take Abs value r± = ωΔt ± ω 2Δt 2 −1( ) . 

  If ωΔt > 1,  Leapfrog apl to osc eqn( )  is numerically unstable

 ∴ for given ω ,  Δt  can not be too big. ∴  Try smalller values of Δt

Case 2 :  ωΔt < 1,  r± = iωΔt ± 1−ω 2Δt 2   under rad is Real b/c >0( )
• Try squaring both sides:  r±

2 =ω 2Δt 2 + 1−ω 2Δt 2( )⇒ r±
2 = 1   

This happpens because it is bounded: yn = ar+
n + br−

n   ⇒
 ie @r = 1 yn ≤ a + b ;  a + b  will never be bigger than  

  If ωΔt < 1,  Leapfrog apl to osc eqn( )  is numerically stable

a = 1+ 1−ω 2Δt 2

2 1−ω 2Δt 2
y0( ), b = −1+ 1−ω 2Δt 2

2 1−ω 2Δt 2
y0( )

 

Advection

u x,0( ) = Aeikx

u x, t( ) = Aeik x−ct( )

⎫
⎬
⎪

⎭⎪
1( ) ∂u

∂x
≅
u x + Δx, t( )− u x − Δx, t( )

2Δx
≡ δ2xu  

Exact Soln: u x, t( ) = A0e
ik x−ct( ) rewrite as: u x, t( ) = A0e

− ikct( )eikx

δ2x eikx( )⇒ eikx+Δx − e− ikx+Δx

2Δx
⎛
⎝⎜

⎞
⎠⎟
eikx = eikΔx − e− ikΔx

2Δx
⎛
⎝⎜

⎞
⎠⎟
eikx ⇒

δ2x eikx( ) = i sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟ e

ikx Recall: ∂
∂x

eikx( ) = ikeikx Replace (1) by:

∂u
∂t

+ cδ2xu = 0 2( )⇒ ∂u
∂t

+ ci sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟ e

ikx = 0
Since new form 
find soln to match:

Assume a soln of the form u x, t( ) = A t( )eikx 3( )

Subst  3( ) into 2( )⇒ dA
dt
eikx + cA t( )δ2x eikx( ) = 0

dA
dt
eikx + ic sin kΔx

Δx
⎛
⎝⎜

⎞
⎠⎟ e

ikxA t( ) = 0 ⇒ dA
dt

eikx + ic sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟ e

ikx A t( ) = 0

dA
dt

= i −c sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟ A

A 0( ) = A0

⎫
⎬
⎪

⎭⎪
4( )  

 This is osc eqn with ω = -c sin kΔx
Δx

 where ω  is a constant

∴  we can say previous results apply
∴  Soln to 4( ) = A t( ) = A0e

iωt ⇒ u x, t( ) = A0e
iωt eikx 5( )

⇒ u x, t( ) = A0e
i kx+ωt( )( ) ⇒ u x, t( ) = A0e

ik x+
ω
k
t⎛

⎝⎜
⎞
⎠⎟ aprox soln  , space deriv

 48 min

⇒ A0 exp ik x − c sin kΔx
Δx

t⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 notice this is similar to exact sol
 except we have c' term

⇒ A0e
ik x−c ' t( )   

 where c ' =
c sin kΔx

Δx
  travelling wave w/ phase speed c '

Amp=A0 , Travellingwave, λ = 2π
k

, phase speed=c sin kΔx
Δx

form: u x, t( ) = A t( )eikx ⇒ dA
dt

= iωA 2( )
leads to ODE, happens to be the Osc eqn  w/ a particular form of ω

ω = −c sin kΔx
Δx

3( )  previous soln:  An+1 = An 1+ iωΔt( )
Stability Condition for LF

ω = −c sin kΔx
Δx

c sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟
Δt < 1 ⇒

c Δt
Δx

sin kΔx < 1

LF time, 2nd order space: uj
n+1 = uj

n−1 − cΔt
Δx

u j+1
n − uj−1

n( )
 

  
 
 



Numerical Modeling II

eix − e− ix = 2i sin x , eix + e− ix = 2 cos x , eiπ = −1 , eiθ = cosθ + i sinθ

1
i
= −i , δ x

2uj =
uj+1 − 2uj + uj−1

Δ2x

γ  is a smoothing parameter.  γ 2l =
Δx2

4
⎛
⎝⎜

⎞
⎠⎟

l

δ x
2 eikx( ) = 1

Δx2 eik j+1( )Δx − eik j( )Δx − eik j( )Δx + eik j−1( )Δx( )→ dA
dt

= −2γ 2
1− cos kΔx( )

Δx2

⎛
⎝⎜

⎞
⎠⎟
A

uj
n+1 − uj

n−1

2Δt
+ c

u j+1
n − uj−1

n

2Δx
= υ

uj+1
n−1 − 2uj

n−1 + uj−1
n−1

Δx2  or  δ2tu j
n + cδ2x

n u j
n = υδ x

2uj
n−1

When c = 0,
uj
n+1 − uj

n−1

Δt
= −γ 4δ x

4uj
n

1( ) ∂u
∂t

+U ∂u
∂x

= −g ∂h
∂x

−g ∂h
∂x

= PGF  term;  U  is constant

2( ) ∂h
∂t

+U ∂h
∂x

= −H ∂u
∂x

−H ∂u
∂x

=  Divergence term
  

1( ) ∂u
∂t

+U ∂u
∂x

= −g ∂h
∂x

2( ) ∂h
∂t

+U ∂h
∂x

= −H ∂u
∂x

→
u = aeik x−ct( )

h = beik x−ct( )

⎧
⎨
⎪

⎩⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

→ c =U ± gH Spceial case

PGF( ) j
n = −g

hj+1 2
n − hj−1 2

n

Δx
= −gδ xhj

n ;
Div
term

⎛
⎝⎜

⎞
⎠⎟ j+1/2

n

= −H
uj+1
n − uj

n

Δx
= −Hδ xu j+1 2

n

δ2tu j
n +Uδ2xu j

n = −gδ xhj
n ;

δ2t hj+1 2 +Uδ2xh = −Hδ xu j+1 2
n

Tr ≡ Approx −  Exact ⇒ Tr ≡
h x + Δx

2
⎛
⎝⎜

⎞
⎠⎟ − h x − Δx

2
⎛
⎝⎜

⎞
⎠⎟

Δx
− ∂h
∂x

Expand h x + Δx
2

⎛
⎝⎜

⎞
⎠⎟ & h x − Δx

2
⎛
⎝⎜

⎞
⎠⎟ with Taylor series:

h x + Δx
2

⎛
⎝⎜

⎞
⎠⎟ = h x( ) +

h ' x( ) Δx
2

1!
+
h '' x( ) Δx

2
⎛
⎝⎜

⎞
⎠⎟

2

2!
+
h ''' x( ) Δx

2
⎛
⎝⎜

⎞
⎠⎟

3

3!
+ ...

h x − Δx
2

⎛
⎝⎜

⎞
⎠⎟ = h x( )−

h ' x( ) Δx
2

1!
+
h '' x( ) Δx

2
⎛
⎝⎜

⎞
⎠⎟

2

2!
−
h ''' x( ) Δx

2
⎛
⎝⎜

⎞
⎠⎟

3

3!
+ ...

Tr ≡

2 ∂h
∂x

Δx
2

1!
+ 2

∂h3

∂x3

Δx
2

⎛
⎝⎜

⎞
⎠⎟

3

3!
Δx

− ∂h
∂x

⇒ Tr ≡ ∂h3

∂x3

Δx2

24
⎛
⎝⎜

⎞
⎠⎟

 

S2π = f :  f x + 2π( ) = f x( )  all x{ } = definition of a 2π  periodic function
Basis - Definition :   The vectors e1,e2 ,....,en  form a basis for V  if each vector in V  can be uniquely 
expressed as a linear combination of the vectors  e1,e2 ,....,en  

Basis of S2π = eikx ,  k = 0, ±1, ± 2,...{ }  If f ∈S2π , f x( ) = ake
ikx

k=−∞

∞

∑ , {this is fourier series}

For f  to be real-valued:  a−k = ak
*

ake
ikx + a−ke

− ikx = ake
ikx + ake

ikx( )*
= 2 Re ake

ikx⎡⎣ ⎤⎦

f x( ) = a0 + ake
ikx

k=1

∞

∑ + cc.⎡
⎣⎢

⎤
⎦⎥
,    where  cc = complex conj

------------------

Spectral Method  AKA projection method, (here applied to linear advection eqn)

∂u
∂t

+ c ∂u
∂x

= 0, u x, t( )= ak t( )eikx
k=−∞

∞

∑
∂u
∂t

=
dak
dt

eikx
k=−∞

∞

∑ , ∂u
∂x

= ikak t( )eikx
k=−∞

∞

∑

∴∂u
∂t

+ c ∂u
∂x

=
dak
dt

eikx
k=−∞

∞

∑ + ickak t( )eikx
k=−∞

∞

∑ ⇒
dak
dt

+ ikcak t( )⎡
⎣⎢

⎤
⎦⎥k=−∞

∞

∑ eikx = 0

IC:   f x( ) = u x,0( ) = ak 0( )eikx
k=−∞

∞

∑ , Assume:  u x, t( ) = ake
ikx ipod ~20 m{ }

k=−∞

∞

∑

⇒
dak
dt

+ ikcak t( )⎡
⎣⎢

⎤
⎦⎥k=−∞

∞

∑ eikx = 0 Adv eqn from before{ }  

Require:   < dak
dt

+ ikcak t( )⎡
⎣⎢

⎤
⎦⎥
eikx , eilx > = 0

= 0 dak
dt

+ ikcak t( )⎡
⎣⎢

⎤
⎦⎥
= 0 when k ≠ l{ }

= 2π dak
dt

+ ikcak t( )⎡
⎣⎢

⎤
⎦⎥
= 0 when k = l{ }

dak
dt

+ ikcak t( ) = 0  now have ODE{ } →  dak
dt

= −ikcak ,   

dak
ak

= −ikcdt → 1
ak
dak∫ = −ikcdt∫ → lnak = −ikct →

eln ak = e− ikct → ak t( ) = ak 0( )e− ikct

II)  Do inner product: < u x,0( ), eikx > = < ak 0( )e− ikct , eikx >

= ak 0( ) = 1
2π

f x( )e− ikxdx
0

2π

∫

 

Time-diff Advection Diffusion 
Forward U S 
Leapfrog S  U 

  
 

 

 



Spectral Methods 
The Spectrum of a Function 
• Integral transforms and the spectrum of a function are closely related; in fact, an integral transformation 

can be thought of as a resolution of a function into a certain spectrum of components (Farlow 1982, p. 
74). 

•  Although the time step is more restricted with the spectral method than with centered differences, the 
solution is more accurate for a given wavenumber and fewer waves need to be retained in the solution 
for comparable accuracy, leading to a coarser grid and larger Δx (Mote 2000) 

• The spectral method does not introduce phase speed or amplitude errors, even in the shortest 
wavelengths (Duran 1999, p. 178) 

Finite Fourier Transform 
•  If the Fourier-series expansion of a real-valued function is truncated at wave number N, the set of 

Fourier coefficients contains 2N+1 pieces of data. 
 
 
Classic Initial - Boundary - Value Problem
∂u
∂t

= υ ∂2u
∂x2 , 0 < x < π 1( ) Diffusion Eqn

u 0, t( ) = u π , t( ) = 0, t > 0      Boundary conditions
u x,0( ) = f x( )                       Initial condition
Theorem
• Any function satisfying the B.C. can be expressed as an infinite series in the functions
  sin nx( ),  n = 1,2,...
• The set sin nx( ){ }, n = 1,2,... is a basis for the vector space of functions that satisfy the B.C.
Orthogonality

sin mx( )
0

π

∫ sin nx( )dx =
0 if m ≠ n
π

2  if m = n

⎧
⎨
⎪

⎩⎪
Series Solution

• Write solution to 1( )  in the form u x, t( ) = am t( )sin mx( )
m=1

∞

∑   & substitute into 1( )

• This function automatically satisfies the BC
• Now need to satisfy:    PDE,  IC

 

 
 



SJSU Meteorology 240;  Jan 24, 2007   
   
Part 1 : NUMERICAL METHODS FOR SOLVING  DIFFERENTIAL EQUATIONS
Chapter 1 :  Finite difference methods
in 1-D, time is our dependent variable (in ODE)

Recall:   f '(t) = lim
Δt→0

f t + Δt( )− f (t)
Δt

        for small Δt, f '(t) ≅
f t + Δt( )− f (t)

Δt
 

 As Δt ↓,
 cost ↑

Forward diff.  If Δt  > 0, we are loking forward in time.  Marching forward in time steps:   
| − − − | − − − | − − − | − − − | − − − | − − − | − − − >
0 Δt 2Δt 3Δt nΔt t
t0 t1 t2 t3 tn

Δt = t1, ∴ tn = nΔt ,  where Δt = time step

Notation :
Yex t( ) = exact solution to ODE

Yn t( ) ≡ Yapprox nΔt( ) = approximate solution at time tn( )

Example 1 : General ODE

1( ) dy
dt

= f y( )
• A unique solution is possible if an initial condition is given, e.g. y 0( ) = y0

• Simplest method for solving it is (2):

2( ) dy
dt

⎛
⎝⎜

⎞
⎠⎟ n

≅
Yn+1 −Yn

Δt
 If Δt > 0 then it is: Forward  

Difference Solution.

3( ) Yn+1 −Yn
Δt

= f yn( )⇒ Yn+1 = Yn + Δt f yn( )
  • Euler's Method  (Forward time differencing)

• An approximation for (1) made by replacing LHS of (1) with RHS of (2) and setting it equal to f yn( )

Example 2 : IVP  "Decay/friction" equation( )

4( ) dy
dt

= −Ky, Y 0( ) = Y0( )

f y( ) = −Ky, K > 0, Exact solution:   Yex t( ) = y0e
−Kt

 

Solution is monotonically decreasing.  Properties:
•  as t→∞, yex t( )→ 0.

   if t1 < t2 ⇒ yex t2( ) < yex t1( )
• lim

t→0
 yex t( ) = 0

Note: yex t( )  does not change sign 
In finding approximate solutions, we 
want these properties to be preserved.

 

 



 
 
• To find approximate solution, apply Euler's method to (4) & solve for yn :

yn+1 − yn
Δt

= −kyn ⇒ yn+1 = 1− kΔt( )yn  
where k  has to have dimensions of inverse 
time (since it is subtracted from 1)

y1 = 1− kΔt( )y0 ,

y2 = 1− kΔt( )y1 = 1− kΔt( )2 y0

(5) yn = 1− kΔt( )n y0

• Goal/hope: as  Δt→ 0, approx soln → exact soln;  i.e. yn → yex
   In general, it is very hard know to this, if we do not have analytical soln.
   In the above case, we can do that directly.

yex t( ) = y0e
−Kt  ⇐   Recall:  exact solution to 4( )  

Substitute tn = nΔt  into 4( ): yex nΔt( ) = y0e
−knΔt ⇒ Yex nΔt( ) = y0 e−KΔt( )n

Notice 1− kΔt( )n = e−KΔt( )n  and  e−kΔt = 1− kΔt +
kΔt( )2

2
+ ... 1st 2 terms of Taylor exp..

Note:  this not an exact solution.  Another method is to do it graphically, then we see
that the approx sln converges to exact soln.

The behavior of the solution depends on the value of kΔt, such that yn = 1− kΔt( )n y0

Case 1 :  0 > kΔt < 1; Properties:
• Because of the power rel. function gets smaller ST yn+1 < yn  for all n
i.e.  monotonically decreasing function.  

 • "If you take a fraction to the nth power it is zero"   lim
n→∞

yn = 0

∴Two basic properties from exact solution are preserved
Case 1A : kΔt = 1; yn = 0 @ n ≥ 1
Case 2 :   1 < kΔt < 2
−1< 1− kΔt < 0 ⇒ 1− kΔt < 1

yn = 1− kΔt( )n y0 ⇒ yn → 0 as n→∞

Note:  we get negative values!  Solution does approach 0, but it is not monotonic.
Bifurcation:  It is changing its behavior (when the sign changes)

 



Case 3 kΔt > 2
⇒1− kΔt < −1⇒ 1− kΔt > 1

yn →∞ as n→∞. ∴ yn+1 > yn
Properties:
• Unstable solution:  blows up
If Δt   is too large, it behaves badly.

This is an example of Numerical Instability

If exact soln is bounded but the approx soln is unbounded 
   ie. approx soln → 0 as n→ 0

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Mon, Jan 29

The Oscillation Equation
dy
dt

= iω y

y 0( ) = y0

⎧
⎨
⎪

⎩⎪
  

Solution : y = y0e
iωty or ⇒ y = y0 cosωt + i sinωt( )     See Emerson Fig. 1{ }     

• Assume y0  is real.   (take real part for solutions, generally ~~check)
• Re y( ) = y0 cosωt,    where ω [rad s-1 ] = angular frequency.  Can be  + or  −  

• Period : 2π
ω

= P; ie. period = 1
f

2 aspects to an Oscillation  (you always want to get right in a numerical scheme):
• Period:P
• Amplitude: y0

Oscillation Eqn (Duran, p. 49):

2.30( ) dψ
dt

= iκψ ,  where κ = frequency (real constant). Integrating 2.30( )  over a time Δt  yields:

2.31( ) ψ t0 + Δt( ) = eiκΔtψ t0( ) ≡ Aeψ t0( )  , where Ae ≡ "exact amplification factor", a complex 

number of modulus one.  According to (2.31),  ψ  moves κΔt  radians around a circle of

          radius ψ t0( )  in the complex plane over the time interval Δt.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DIFFERENCING SCHEMES :    

1  Euler, 2A  Implicit,  2B  Trapezoidal Implicit, 4  Leapfrog

1  Euler : yn+1 − yn
Δt

= iω yn • Want to focus on the real part

⇒ yn+1 = 1+ iωΔt( )yn ⇒ yn = 1+ iωΔt( )n y0

We want the absolute value to see if it blows up: yn = 1+ iωΔt( )n y0

Note:  x + iy = x2 + y2 ⇒ 1+ iωΔt = 1+ω 2Δt 2  ω 2Δt 2  is 
 always > 0

• iωΔt > 1  then grows
• iωΔt < 1 then shrinks

Conclude: > 1  for all t
• both are > 1 for all t > 0;     See Fig. 2{ }

 

 
 
 
 
 
 
 
 
 



 Conclusion:  
• Euler's method is UNSTABLE  for osc eqn. and is so for all values of ω Δt > 0

ie. unconditionally unstable,  no matter how small you make Δt, it is unstable, though 
  a smaller Δt  takes longer to blow up.  Here diff scheme 

is producing the instability.   ie.  NUMERICAL INSTABLITY, created by mathematiical 
technique, does not represent anything in nature.

  You do not want the diff scheme to create the unstability. 
• EULERS METHOD WILL NOT WORK FOR ANY WAVE EQNS

2  IMPLICIT METHOD / SCHEME  (somewhat of a misnomer)

Recall Osc Eqn:  dy
dt

= iω y.  Rewrite LHS ⇒ yn+1 − yn
Δt

= iω yn+1 A( )

NB. In generally, we are trying to solve eqns of this form:  dy
dt

= f (y) ,

and we take yn+1 − yn
Δt

= f (yn+1 ),    solve this as: yn+1 = yn + Δtf yn+1( )
∴ since there is an unknown on both sides, this is known as Implicit Method
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
COMPARE

1  Euler's method  2  Implicit Method

   • yn+1 = yn + Δt f yn( ) • yn+1 = yn + Δt f yn+1( )
• Explicite solution:  All is known •  Implicit: computationally more

on the RHS expensive
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
∴  Since Implicit is so expensive, semi - implicit  is sometimes used.  This method

splits the RHS into liner & nonliner  parts
A( )  above can be rewritten as:  yn+1 = yn + iωΔt( )yn+1 ⇒ yn = yn+1 − iωΔt( )yn+1 ⇒

yn = yn+1 1− iωΔt( )⇒ yn+1 =
1

1− iωΔt
⎛
⎝⎜

⎞
⎠⎟ yn ,  where λ ≡ 1

1− iωΔt

Solution: yn = λn y0 ABSOLUTE VALUE OF λ  IS CRITICAL!   IF:

• λ < 1⇒ damped, shrinks
• λ = 1 ⇒ steady, stays the same
• λ > 1 ⇒  grows

λ = 1
1− iωΔt

= 1
1+ω 2Δt 2

 & ∴  always < 1  & ∴  sol decays exponentially

See Emerson Fig 3{ }

 

 
 
 
 
 



 
 
λ :  whether it grows or is dissipates depends on value of λ

• Case: λ < 1⇒ Dissipative scheme
→  this is artificial damping, dissipation (of the amplitude). It is as if the 

differencing scheme has its own inherent friction/damping effect.
     → exact solution to the ODE is not damped, but computed solution is, 

∴ it is still not correct. 
→ If damping is small and does not go too long, it may be useful.

Selective damping is a good thing (ie small, sound).  Some times they add 
dissipative terms to dampen selective waves .  This can be used to dampen poorly
resolved waves, i.e. resoved, but poorly resolved (e.g. at lower end of grid scale).
Δt  needs to be chosen carefully.

→ Implicit is stable,  need to focus on accuracy.  Need to pick Δt  for accuracy 
     → Use semi-implict to be able to increase tme step.  Above is just one example of an Implict.

 

 
2B  Trapezoidal Implicit        See Emerson fig 6{ }
• Average the input differences b/t Euler's yn  & Implicit yn+1

Generally:    dy
dt

= f (y),
yn+1 − yn

Δt
= iω

2
f yn( ) + f yn+1( )⎡⎣ ⎤⎦

Solution:  "A form of it"

yn = λn y0 with λ = 1 ⇒ yn = y0   See Emerson fig 7{ }    

• The amplitude is exactly correct, but the period might be off.  This would lead

to the phase error ↑
• When trapezoidal is referred to, this is usually this method.  Very popular in certain...

 

 



 
Wed, Jan 31
Review:  Complex numbers:  

• x + iy = reiθ ⇒ x = real part,  y = imaginary part.
• one complex # = 2 real equations

x + iy = reiθ , r = x2 + y2 , θ = tan−1 y
x

⎛
⎝⎜

⎞
⎠⎟ = sin−1 y

r
⎛
⎝⎜

⎞
⎠⎟ See Emerson  fig 1.{ }

Raise complex # to a power:

• x + iy( )n ⇒ (problematic) it has n terms in it, odd ⇒ complex, even ⇒ real

• polar coordinates simple( )⇒  x + iy( )n = reiθ( )n = rneinθ = rn cosnθ + i sinnθ( )
TRAPEZOIDAL SCHEME : solving the oscillation equation
• Implicit method
• uses forward differencing
dy
dt

= iω y, y 0( ) = y0

yn+1 − yn
Δt

= iω yn + yn+1

2
⎛
⎝⎜

⎞
⎠⎟

, solve for  yn = λn y0 , now λ =
1+ iωΔt

2

1− iωΔt
2

,
λ = 1 b/c  1=  
num & denom  

Now put this in polar coordinates such that  λ = e2iα  where α = tan−1 ωΔt
2

See EL Fig 2{ }
• Nice to be able to plot up one of these things.  Nice to have a compact formula.
• "Try to do as much algebra as possible before performing computations;  



*( ) yn = ei2α( )n y0  Approximate

• We know that the approximate solution has the right amplitude b/c λ = 1
but may not have the right frequency. What is the approx freq & how does it compare
to exact? Technique:  write it in the same form as exact soln. 
yex nΔt( ) = eiωnΔt y0 ⇒

**( ) yex nΔt( ) = eiωΔt( )n y0

• Exact solution.  P = 2π
ω

; f =
ω
2π

; ω =ω

    • What is the angular frequency ωT( ) of the calculated solution  yn?   
Look at how freq appears in exact solution: iωΔt      Approx: i2α

    • Force approx argument to have the same as exact

  ωT rad s-1⎡⎣ ⎤⎦ =
2α
Δt

,  where α = tan−1 ωΔt
2

⎛
⎝⎜

⎞
⎠⎟ ⇒

Full 
form:

ωT =
2 tan−1 ωΔt

2
⎛
⎝⎜

⎞
⎠⎟

Δt

   • Is this dimensionally correct? ω s-1⎡⎣ ⎤⎦   & Δt s[ ]  ∴  looks OK dimensionally

• look at ωT

ω
ratio:  ωT

ω
=

2 tan−1 ωΔt
2

⎛
⎝⎜

⎞
⎠⎟

Δt
ω

  ⇒ ωT

ω
=

tan−1 ωΔt
2

⎛
⎝⎜

⎞
⎠⎟

ωΔt
2

starting point
for HW ~30min{ }  

• HW: plot this as a function of ωΔt, see what it looks like:   Hint:  @ 0 will get error, 
  but if we expand in taylor series, ratio appproaches 1 as ωΔt→ 0

• we will prove:   ωT

ω ex

< 1⇒ ωT <ω ex ⇒ PT > Pex See figs 3 & 4{ }   

PT = 2π
ωT

Pex =
2π
ω

⎫

⎬
⎪⎪

⎭
⎪
⎪

Periods

• Functions get more & more out of phase, eventually they will be 1/2 period out of phase,
  then go back in etc.....
• This differencing scheme gives exact ampl, but period is wrong.

 

 



HW2 discussion:  see HW 2 sheet
Aliasing:  See fig 5
Assumption: Δt = 1 period
"Sampling the oscilation, ex.  8000 hz

* Shortest resolvable period = 2Δt

Ex:   p = Δt
• no point looking at 2Δt
General Rule:

If p1 < 2Δt,   then there exists p2 > 2Δt  ST the 2 oscillations are indistinquishable

•There is always a lower limit to period.
• If there is smallest period there is a largest frequency:  you can not get above that freq.
Interqactive Aliasing tool:
www.dsptutor.freeuk.com/aliasing/AD102.html
ex:   if freq is too high, then there are 2 diff functions that pass through same point
if input freq is 3000HZ it IS RESOLVABLE
2Δt  is resovalble, but jagged.  Thee biiigets delt could be is half of the period.
undersampling vs oversampling
SUMMARY:

• Pmin =2Δt  ⇒   ωmax =
2π
pmin

= π
Δt

•ωmaxΔt = π   HW2b

• All methods so far have been 2-level methods.

Next time:  
LEAPFROG:   ωT >ω

 

 
 
 
` 
 
 
 



 

Monday, Feb 5
Implicit methods - Complications  (Preamble to leapfrog method)
• Solving System of linear eqns w/ Implicit  scheme
Explicit Scheme :
dx
dt

= ax + by

dy
dt

= cx + dy

⎫

⎬
⎪⎪

⎭
⎪
⎪

⇒

xn+1 − xn
Δt

= axn + byn ⇒ xn+1 = xn + Δt axn + byn( )
yn+1 − yn

Δt
= cxn + dyn ⇒ yn+1 = yn + Δt cxn + dyn( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

Implicit Scheme :
dx
dt

= ax + by

dy
dt

= cx + dy

⎫

⎬
⎪⎪

⎭
⎪
⎪

⇒

xn+1 − xn
Δt

= axn+1 + byn+1 ⇒ 1− aΔt( )xn+1 − bΔt( )yn+1 = xn

yn+1 − yn
Δt

= cxn+1 + dyn+1 ⇒ 1− dΔt( )yn+1 − cΔt( )xn+1 = yn

⎧

⎨
⎪⎪

⎩
⎪
⎪

∴we will get a system of linear eqns to solve at every grid point.  In some cases it is worth it.
If we had system of non-linear eqns,  we had have to iterate each time step before going on to next
time step.  Conclusion:  Implicit is not worth it if  it is compuationally too expensive.

ACCURACY

• So far:  all discussion has been re. forward differencing:   dy
dt

⎛
⎝⎜

⎞
⎠⎟ n

≅
yn+1 − yn

Δt
 RHS is forward diff

See Fig 1.
Forward Diff:

Centered Difference: f ' t0( ) ! f t0 + Δt( )− f t0 − Δt( )
2Δt

Hypothesis: Centered is more accurate than forward diff
Local truncation error:  TR ≡ approx expression minus exact

TR F( ) = f t + Δt( )− f t( )
Δt

− ′f t( )

TR C( ) = f t + Δt( )− f t − Δt( )
2Δt

− ′f t( )

• Key in comparing:  Assume Δt  is small.
• Approach: expand in power series & then compare expansions.
a1x + a2x

2 + a3x
3 + ... fillin from emerson{ }

  Let x→ 0

  lim
x→0

fillin from emerson{ }
Summ :   higher order term approaches zero faster than lower order.

 

 
 
 
 



 

General:  if n > m  lim
x→0

anx
n

amx
m = 0

•  a0x + a1x
1 + a2x

2 ≅ a0x  for small x   ie.   leading term that determines behavior
Now, do Taylor series expansion on above:

TR F( ) =
f ' t( )Δt + f '' t( )

2
Δt 2 + ...

Δt
− f ' t( )

= f ' t( ) + f '' t( )
2

Δt + .... − f ' t( ) ⇒
f '' t( )

2
Δt +  ... (higher order terms)

TC F( ) =  fill in emerson

TC F( ) = f ''' t( )
3!

Δt 2 +... (higher order terms)

Conclusion:

TR F( ) : First order accurate
TC F( ) : Second order accurate: more accurate than 1st order

 

 
 
Next time: leap frog 
 
Wed.  Feb 7,    Truncation Errror & Leap Frog

Tr = O Δt k( );    
Em: The leading term in Taylor expansion is α  to Δt k

 "Don't go beyond 2nd, price is too high"
• the larger k⇒  the more accuurate

Centered Time Diffferencing

dy
dt

= f y( )
y 0( ) = y0

⎫
⎬
⎪

⎭⎪
IVP

dy
dt

⎛
⎝⎜

⎞
⎠⎟ n

≅
yn+1 − yn−1

2Δt
  ⇒

yn+1 − yn−1

2Δt
= f yn( )⇒ yn+1 = yn−1 + 2Δt f yn( ) *( )

Leapfrog Method :   going from back to front using the person in the middle
• 2nd order accurate
• explicit method ⇒ easy to program

To get it going, need to specify:   y0   and y1

 

 
 
 
 
 
 
 
 
 
 



Drawbacks :
• NOT an  IVP (in the strict sense) since we need to specify 2 values

Procedures to get y1 :
• Use Euler's Method: y1 = y0 + Δt f y0( )⇒

yn+1 = yn−1 + 2Δtf yn( )    for n = 1,2,...
− Even though Euler's method is unstable for the osc eqn, can be used

for 1 time step w/out degrading the accuracy
• Set y1 = y0 . Note: not a good approach

Example : Apply Leapfrog to osc eqn
• y0 :   specified  in IVP
• y1 = 1+ iωΔt( )y0

• Then, apply LF from here:  yn+1 = yn−1 + 2iωΔt( ) yn( ), n = 1,2,... **( )
• Look for solutions of the form yn = r

n , where r  is some # TBD

• Subst. this into **( )  to see if there are solutions of this form:  rn+1 = rn−1 + 2iωΔt( ) rn( )
• divide by lowest power, i.e. rn−1, ⇒ r2 = 1+ 2iωΔt( )r ⇒ r2 − 2iωΔt( )r −1= 0

• Quadratic formula produces 2 solutions:  r± = iωΔt ± 1−ω 2Δt 2

• General Solution to **( )  is a linear combination: yn = ar+
n + br−

n    (~ 36min) 

where a & b ≡ arbitrary constants determined using/from y0 & y1  
      If you plug any expression of that form into **( )  then it's solved.
      We have two variables to determine, but we have specified 2 things;  

 y0 & y1  are specified, and a and b are determined by that specification.
       HW notes:  you plug in:   • n = 0, get y0 = _____

• n = 1, then solve for  a & b  
Case 1 :  ωΔt > 1

 r± = iωΔt ± −1( ) ω 2Δt 2 −1( ) ⇒  r± = iωΔt ± i ω 2Δt 2 −1( ) ⇒
r± = i ωΔt ± ω 2Δt 2 −1( )( )   Both #s are on the Img axis.  Since i = 1, take Abs value ⇒

r± = ωΔt ± ω 2Δt 2 −1( ) .  

If either r+  or r−  has an abs val > 1, then yn  blows up.  1st look at the r+  case:
→  for stable sol abs val of both roots can not be GT 1

r+ = ωΔt ± ω 2Δt 2 −1( )   Since both terms on RHS are positive, then:

r+ = ωΔt + ω 2Δt 2 −1( )  = r+ =ωΔt ± ω 2Δt 2 −1( )
Key question: Is this > 1?  Since it is, then   r+ > 1⇒  solution grows exponentially
∴  Method is unstable in this case,   conditinionally unstable if othher cases are stable( )

           

 



 
 
Summary:  If ωΔt > 1,  Leapfrog applied to osc eqn( )  is numerically unstable

 ∴ for given ω ,  Δt  can not be too big. ∴  Try smalller values of Δt

Case 2 :   ωΔt < 1,  r± = iωΔt ± 1−ω 2Δt 2   term under rad is Real b/c not negative( )
• Try squaring both sides:  r±

2 =ω 2Δt 2 + 1−ω 2Δt 2( )⇒ r±
2 = 1   

This happpens because it is bounded: yn = ar+
n + br−

n   ⇒
 ie @r = 1 yn ≤ a + b ;  a + b  will never be bigger than __________ 

Summary:  If ωΔt < 1,  Leapfrog applied to osc eqn( )  is numerically stable

a = 1+ 1−ω 2Δt 2

2 1−ω 2Δt 2
y0( ), b = −1+ 1−ω 2Δt 2

2 1−ω 2Δt 2
y0( )

yn = ar+
n + br−

n As ωΔt  →  0, then a→ y0    and b→ 0       ~ 65-70 min

• 1st term:   Physical mode:  as ωΔt  →  0, ar+
n →  exact solution

• 2nd term: Computational mode: as ωΔt  →  0, br−
n → 0

− This comp mode is the price we pay for 2nd order accuracy
− Essentialy all is OK,  w/  higher resolution, br−

n → 0
HW3:  write it in polar cooordinate ~ 66 min{ }

−  calculate a &  b;    then α.  then plot the 2 modes sep & together
− set ω = 1

draw picture of the vectors:   α  is.....   fill in
Alternate form of solution (writing in polar coordinate form):

yn = ae
inα + b -1( )n e− inα , where α = sin−1 ωΔt( )

Case 3:   ωΔt = 1
     • Do it in HW.  we will see:   ~74 min.   fig  1{ }

− computational mode will get very small 
Case 4  ?  see em's  notes.     JN fig 2{ }
HW:    frequency  (~75 min)
SUMMARY :
• ωΔt < 1⇒ Conditionally stable 
• Existance of compuational mode 
• This puts constraint on how big ωΔt  can be: ie  can't be bigger than 1
CHALLENGES :
• find ways to control comp mode
• in non-linear, comp mode becomes mildly unstable

    

 

 
 
 



Mon Feb 12
Homework notes 
• In a mathematical proof, start with what is given,  not with the concluson.
• QED:  Latin, as it was shown/supposed to be shown  ?
Aliasing:  undersampling.

ωΔt = 2π Δt
p

⎛
⎝⎜

⎞
⎠⎟

  meadure of how well the osc is resolved.  The smallest 

for a given period, we do not want Δt  to be too big.   Δt ≤ p
2

 or, ωΔt ≤ π

Do not pick Δt  to be too big!  Make sure we have sampled osc sufficiently.
Aliasing examples:  1) wagon wheel effect:  appears as if the wheel has stopped 
or is going backwards.
Review :    Time differencng schemes.
Two - level schemes : n,n +1( ),  all are 1st order accurate)

1) Euler (E) (Explicit): yn+1 = yn + Δtf yn( )
2) Backward (B) (Implicit):  yn+1 = yn + Δtf yn+1( )

called B b/c → yn = yn+1 + −Δt( ) + f yn+1( )⎡⎣ ⎤⎦

3)  Trapezoidal (T) (Implicit): yn+1 = yn +
Δt
2

f yn( ) + f yn+1( )⎡⎣ ⎤⎦

Three - level schemes : n −1, n, n +1( ),
4) Leapfrog (LF): yn+1 = yn−1 + 2Δtf yn( )
   • has a computational mode.  No one goes beyond 3 level.  would get more comp. modes
− − − − − − − − − − − − −
We have applied these methods to the oscillation eqn.  Have found these properties:
E:  unstable for all values of ωΔt. ∴  
B:  stable for allωΔt., 

 Cons: • has artificial dissipation,   damps towards 0.  
→ 0 as Δt→∞

T:   • stable for all ωΔt.
• no artificial dissipation

     • overestimates period 
L:  • Pros:  i) 2nd order accurate;  ii) stable;   iii) explicit

• stable if ωΔt < 1 (conditionally stable)
• Cons:   i)  puts restriction on Δt    ii)  computational mode

 

 
 
 



Multi - stage schemes  (not multi step)  from Duran 

• AKA:  prediictor-corrector schemes
• trying to get nice props of implicit, but w/outimplicit
Examples:
1)  Euler - Backward  =  Forward-Backward = Matsuno (Alt names)
• 1st come up w/ 1st guess, then try use guess to get improved.
• Explicit method
• 2 time level
• Conditionally stable:  
• 1st order accurate
• has artificial dissipation:  sometimes it is a goood thing.
• can be used to start LF
y* = yn + Δt f yn( );   stage 1

yn+1 = yn + Δt f y*( );   idea = y* ≅ yn+1;    
2) Runge - Kutta schemes (class of multi-stage schemes)
• they have 1st, 2nd, 3rd order schemes
• Cons:   all are unstable when appliied to osc eqn, however Duuran advocates using 

them occasionally
----------------------------------------

Controlling the Computational Mode    (for non-linear eqns)

• it comes since we are using 3 level scheme
• has a tendency to grow, thus there are methods to try to control it.  2 approaches:
1)  periodically restart using a 2 level scheme
See fig 1
LF 17-19
LF 18-20
Restart
discard 19  (or avg 19 &  20)
20 → 21  using 2-level meth
resume LF....
∴  can use:
 Euler backward:  Con: degrades accuracy
 Runge-Kutta:  can be used carefully (Duran)
-programming:   if n is divisible by 20, then employ 1 of above methods.
-these are empirical programming techniques.

2)  modify differencing scheme:  very popular

 

 
 



2.  a)   Time-filters
i) Asselin filter:  tends to suppress comp mode.
note:  comp mode in fig 2.
ii) Robert filter:   Con:  degrades accuracy;  turns it from 2nd order to 1st order accurate
    Pro:  very popular, though Duran says it is dubious.
2.  b)  Leap-Frog Trapezoidal scheme:  advocated by Duran
• It is a predictor-corrector
•  2nd order accuate
y* = yn−1 + 2Δt f yn( )
yn+1 = yn +

Δt
2

f yn( ) + f y*( )⎡⎣ ⎤⎦

 

 
 
 



 

FEB 14
Duran, table 2.1

solution    ~ λnei( )

λ > 1⇒ exp onential growth  (unstable)
λ = 1⇒  constant amplitude
λ < 1⇒  solution is damped (artificial dissipation)

"Phase Error" =
ω c

ω
,   where ω c = computed frequency

The table is generated from from the oscillation eqn.
If a method is superior for the oscillatin eqn, then it is superior for the full set 
of atm eqns.
----------------------------
A PDE 
• linear (simple);  only 1 spatial dimension,  

∂u
∂t

+ c ∂u
∂x

= 0  Advection Eqn;  c = constant;  adv in x direction w/ constant speed  

compare: ∂u
∂t

+V i∇u

≡ du
dt

 toal deriv{ }
∂u
∂t

+ c ∂u
∂x

= 0

u x,0( ) = f x( )

⎫
⎬
⎪

⎭⎪
IVP,  has a uniique soln: u x, t( ) = f x − ct( )

Can be easily proved by pluggin in:  
∂u
∂x

= f ' x − ct( ) ∂ x − ct( )
∂x

= f ' x − ct( )
∂u
∂t

= f ' x − ct( ) ∂ x − ct( )
∂t

= −cf ' x − ct( )
Now do specific example:

u x,0( ) = Ae−
x2

L2

u x, t( ) = Ae−
x−ct( )2
L2

See fig 1 & 2
Note:  distrubance is moving at speed c,  w/out change of shape
i.e if we put a pssive tracer in a stream, and ignore turbulence.    
Thus, w/ any diif scheme we want:
• c to stay the same
• no sign change
• just whole wave to move, same shape etc.

 

 
 



Special case:    This describes advection, hoping to describe something
in real life w/ a simple eqn.  
Now we are dealing with space differencing.  we used LF for time diiff before
u x,0( ) = Aeikx

u x, t( ) = Aeik x−ct( )

Fig 3:   sinusoidal wave:  • can only move in 1 direction

c =  phase speed,   k =  2π
wavelength

wave number 
k serves same purpose in space
as ω does in time

⎧
⎨
⎩

⎫
⎬
⎭

Goal:  Calc finite diff:
• will get errors in: phase speed, ampltude
SPATIAL DIFFERENCING  (FIG 4)

∂U
∂x

⎛
⎝⎜

⎞
⎠⎟ x0 ,t

≅
u x0 + Δx, t( )− u x0 − Δx, t( )

2Δx
;

 2nd order acurate in space
 centered diff;   RHS replaces dervi of exact soln

We will deriive this in a special way & end up w/ osc eqn, and can use past conclusions
We will end up w/ CFL criteria

 
 
 
 



Feb19
LF,   ωΔt = 0.999
when they are in phase=> Constuctive  interference
when 1/2 cycle out of phase ⇒ destructive interference
LF,   ωΔ close to 0, comp mode goes away
-----------------
SPATIAL DIFF
much of what was true for time diff is same for space diff
Fig 1

∂u
∂x

≅
u x + Δx, t( )− u x − Δx, t( )

2Δx
≡ δ2xu  δ2x   is a differencing operating, approx the deriv

Example: δ2x eikx( ) = Recall: ∂
∂x

eikx( ) = ikeikx

= eikx+Δx − e− ikx+Δx

2Δx
⎛
⎝⎜

⎞
⎠⎟
eikx = eikΔx − e− ikΔx

2Δx
⎛
⎝⎜

⎞
⎠⎟
eikx = i sin kΔx

Δx
⎛
⎝⎜

⎞
⎠⎟ e

ikx

Aliasing:  same applies here.   Shortest resolvable λ = 2Δx,

∴ kΔx( )max = π

2Δx can be one of the most troublesome.

Approx val= sin kΔx
Δx

Ratio approx
exact

=

sin kΔx
Δx
k

⇒ sin kΔx
kΔx

Fig 2.
The deriv of 2Δx wave is 0!!  Prettty bad
Look at 2Δxwave (Fig 3) 
Foregone conclusion if we use centered diff on 2Δx wave then we get 0
Centered spatioal diff never gives god results for 2Δxwave,  when we have sharp gariadients
this can cause probs.
24 min, fill in:  Crux of the problem....

 

 



Back to the advection eqn  (linear, 1-dimensional)
∂u
∂t

+ c ∂u
∂x

= 0,   moves it speed c

u x,0( ) = Aeikx

⎫
⎬
⎪

⎭⎪
1( )

,  ⇒ Non-dispersive Traveling wave,  

λ = 2π
k

, c = phase speed

Exact: u x, t( ) = A0e
ik x−ct( )

can be rewritten as: u x, t( ) = A0e
− ikct( )eikx  

Finite diff in space, ...
32 min
Now:  

Replace 1( )  by ∂u
∂t

+ cδ2xuδ2x = 0 2( )
• Sincewe rewrote eqn above in new fokΔxrm, fiind sol to match.   fill in
• Assume a soln of the form u x, t( ) = A t( )eikx 3( )

• Subst  3( ) into 2( )⇒ dA
dt
eikx + cA t( )δ2x eikx( ) = 0  

 This not total deriv,
it is ordinary deriv

   dA
dt
eikx + ic sin kΔx

Δx
⎛
⎝⎜

⎞
⎠⎟ e

ikxA t( ) = 0 ⇒ dA
dt

eikx + ic sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟ e

ikx A t( ) = 0

 now we have ordinary diff eqn for A. Rewrite:

dA
dt

= i −c sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟ A

A 0( ) = A0

⎫
⎬
⎪

⎭⎪
4( )  

 This is osc eqn with ω = -c sin kΔx
Δx

 where ω  is a constant

∴  we can say previous results apply
∴  Soln to 4( ) = A t( ) = A0e

iωt ⇒ u x, t( ) = A0e
iωt eikx 5( )

⇒ u x, t( ) = A0e
i kx+ωt( )( ) ⇒ u x, t( ) = A0e

ik x+
ω
k
t⎛

⎝⎜
⎞
⎠⎟ aprox soln  , space deriv

 48 min

⇒ A0 exp ik x − c sin kΔx
Δx

t⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 notice this is similar to exact sol
 except we have c' term

⇒ A0e
ik x−c ' t( )   

 where c ' =
c sin kΔx

Δx
  travelling wave with phase speed c '

Amp=A0 , Travellingwave, λ = 2π
k

, phase speed=c sin kΔx
Δx

Pnly doff betwn approx &exact is phase speed, this is where error shows up
c '  depends on k
 

 



Note: Fig 5,  ~ 57 min{ }
• 2Δx is stationary, bad error.  It should be moving along at c
• For well resolved waves, c ' ≈ c
• Approx soln is a dispersive wave
•  In the real atm, there is not 1 wave but many, have to do fourier analysis
   ______fill in

WAVE DISPERSION
u x,0( ) = a1e

ik1x + a2e
ik2x      , simple fourier decompsition

Exact soln:  u x, t( ) = a1e
ik1 x−ct( ) + a2e

ik2 x−ct( )   
Patterns of constuc/destruc interfernc will be same, since we just translated it.\
∴  non-dispersive,  initial shape dos not change
x:  sound, light in vacuum, shallow water

But,   in the case where c = c k( )⇒  Dispersive

c1 ≡ c k1( ) ≠ c k2( ) ≡ c2

u x, t( ) = a1e
ik1 x−c1t( ) + a2e

ik2 x−c2t( )  
Matlab demo:
since crest & troughs are at diif sppeds, shap chnages with time
Ex :  deep water waves,   (longer λ  goes faster than shorter)
We do not diispersion created by the diff. scheme.
it is worst for the short λ.
if we have well resolved waves, we get good soln.  
With short:   unravels,  (Fig.  6)    76 min{ }
• this is prototype ex:    fn diff not good w/ sharp gradients.
  ex:  we can start with weak grads, but then they grow to strong ones
--------
Summarize:
• spat diff makes phase speed a func of k, then you get numerical dispersion
   phase speed depends on wavenumber
-----------------------------------------------------------------
next time:
Group velocity:   like energy propagation speed

 

 
 
 
 



Feb 21 
HW Comments:   Fig.  not Figure in text (exception is at beg. of sentence) 
 
Last time
∂u
∂t

+ c ∂u
∂x

= 0 1( )

u x,0( ) = A0e
ikx

1( )→ ∂u
∂t

+ cδ2x = 0

form: u x, t( ) = A t( )eikx ⇒ dA
dt

= iωA 2( )
this leads to an ODE, happens to be the Osc eqn  with a particular form of ω

ω = −c sin kΔx
Δx

3( )
Note :   exact is non-dispersive.   numerical has dispersive
fill in ___ we would n't want to use this to comper with ____  (12 min)
Time diff of 2( );   just looking at time dimension now

Methods of time diff  (so far)
Method Comments
---------------------------------------------------------------
1 Euler • unstable
2 Backward (Implicit) • stable (for all Δt)

•  numerical dissipation, i.e amplitude decays w/ time
3 Trapezoidal (Implict) • Absolutely stable; amplitude is correct.
  • no dissipation
4 LF (Explicit) • Conditionally stable if ω Δt < 1

• Computational mode is a con
• Physical mode is ________

Notes on terrminology: 
• If numerical scheme introduces an unboundedness, then it is "unstable" 

i.e. if it grows w/out bound.   we do not want to create  spurious growth.
• method is stable/unstable
• solution is either bounded or unbounded.
~22 min

 

 
 



 

29 min
Stability Condition for LF

ω = −c sin kΔx
Δx

c sin kΔx
Δx

⎛
⎝⎜

⎞
⎠⎟
Δt < 1 ⇒

c Δt
Δx

sin kΔx < 1

• We want to require that we have stability for all k (wave numbers)

•  sin  is always ≤ 1 ∴
c Δt
Δx

< 1   
Courant-Friedriichs Levy oncondition
CFL 

• CFL<1  is the condition for 1  ________ dimensional cases

in other sit there is some other condition that limits the ratio Δx
c

• CFL ⇒Δt < Δx
c

 
 this condition is exact for this case w/ advection eqn

Δx
c

=  the time for wave to move 1 grid interval
c

→→→→→→

− | − − −− | − −
Δx

! "## $##

the time step has to be < the time it takes for the wave to move 1 grid interval
• This creates problems when there are many difff waves w/ diff speeds
Global Atm Model
• Diff types of waves. Δx = 100 km

• ∴CFL ⇒Δt < Δx
cmax

, where cmax = max wave speed

• Sound waves are the fastest waves in the fluid of the atmosphere

cs ≅ 350 m s-1 ⇒Δt < 105  m
350 m s-1 ≅ 300 s = 5 min  

• This is excessively small, more resolution than required for meteorological waves
  this is ~ 6 times to small (ie 30 min)
• if we cut Δt  in half, we have to cut Δx in half  (check on...)
Ways to relax this conditionn b/c it is so stringent.  here, cut out sound waves:
1) Hydrostatic approximation:   
  •  it filters out all vertically propagating sound waves.

• there are however, still some horizontal sound waves that are hydrostatic
ie horiz propagating waves that move at speed at sound.
they come with volcanoes,  etc...

2) Semi-implicit method allows longer time steps.  This slows down the speed of the 
fast moving, non-meteorological waves, diistorts the picture some,  but they
are not important.  Cons:  more difficult to work with.

 

 
 
 



 

COMBINE TIME AND SPACE DIFFERENCING Ex:  ∂u
∂t

+ c ∂u
∂x

= 0

Notation:  Uj
n ,   where n =  time index, and j = space index

Goal:  appproximate time deriv

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ j

n

≅
uj
n+1 − uj

n−1

2Δt

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ j

n

≅
uj−1
n − uj−1

n

2Δx
⇒ uj

n+1 = uj
n−1 − cΔt

Δx
u j+1
n − uj−1

n( )
• Have to use diff method to get n¨1

n = 0 → n = 1

uj
1 = uj

0 − cΔt
2Δx

u j+1
0 − uj−1

0( )
• Problem:  x domain has to be restricted;  need boundaries

j

x

0   1  2   3  4... ... jmax  jmax+1  

---|---|---|---|---------------------|------*
0 L

 these lateral boundaries are purely 
computational exception :  full latitude circle

Simplest boundary conditions
• cyclic BC,  ie.  u 0, t( ) = u L, t( )   (works well with periodic functions)

∴  above cyclic case would be Δx = L
jmax

u0
n = ujmax

n

  want Δx to be considerably less than L
• Real problems come at end points;  only need to calc one of them  (~75 min)
• uj+1

n − uj−1
n

•  j = 1 : u2
n − u0

n = u2
n − ujmax

n

•  j = jmax ujmax+1
n − ujmax−1

n

• u1
n − ujmax−1

n

• problem need value at 0
• Look at general formula for everyhting but endpoints
• special cases at end points:  use diff formulae
• Initial conditions need to be periodic
• for longer waves, w/ good res, we will get good results.
• med res will give ok results
• _____  will be stationary
• do not go out many time steps, just enough to see if the wave ismoving
• easiast way is to have an array with 2 subscripts.

when debuggin it, want to see if soln is in the right ballark.
• Exact:  thing should move at speed c

 

 
 
 



 

 

Feb 26,   HW5,  0 min...
u = leapFrog u0,u1, s,nMax( )     title:  LF solution of  a well resolved wave.

u( j,n)

for n = 1 :nMax
for j = 1 : jMax

end

⎧
⎨
⎪

⎩⎪

end

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

u( j,n) =
• See that sin wave is propagating at constant speed;  t = 0, Δt,2Δt, 3Δt...
• plot a bunch w/ diff colors
Exam 1 review  (~ min)
• no heavy calculations
• short deriivations
• no programming
• HW is designed to illustrate the theory, imp. to know theoretical stuff for exam
• osc eqn, 
• 4 differencing schemes
• be able to fill in Durans table:  stable;  damped, ...
• CFL
================
EFFECT OF PHASE SPEED
1) Spatial differencing (discretization)
⇒  causes waves to be dispersive, phase speed depends on wave #:   c ' = c '(k)
Fig 1.
as we go to the left, get bettter spatial resolution of the wave
as kΔx→ 0, λ → ∞∞
 only takes into account spatial diff, not time diff.
- if diff time scheme, then it would alter this
How to improve?    this curve is 2nd order diff, 
!!What would happen w/ 4th order scheme?

∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ j

n

≅ 4
3

uj+1
n − uj−1

n

2Δx
⎛

⎝⎜
⎞

⎠⎟
− 1

3
uj+2
n − uj−2

n

2Δx
⎛

⎝⎜
⎞

⎠⎟

Trunc err: O Δx4( )
HOw to create?  start w/ arbitrary linear combo, calc Trunc error, try to zero everything but 1st 4
each coef of Taylor has;    all squared, cubed terms drop out.
Idea:  since spatial difff is causing propblem, perhaps higher order willhelp   
⇒ Still  have problem that 2Δx wave is stationary, no improvement there.  Reason:
whenever you have centered diff you get zero.
• there will be improvement if we have smooth waves,    (26 min)

 



Case :  Advection
• what happens if func has extreme gradients?, like a spike eg.   Fig 2 & 3
• When might that occur?   say frontal zone,   
See Steff.  fig 2
• this phenomenon (trailing waves) can be explained by group velocity (energy propagation).
this si not a computational mode, you would get this w/  any scheme.  it is purely spatioal,
ind of time diff scheme.
Group velocity, cg , the speed that energy propagates;  energy prop velocityy

In 1D:  cg ≡
∂ω
∂k

where ω=kc In 3D, it wold be gradiient, but we won't address that now

cg =
∂
∂k

kc( ) = c + k ∂c
∂k

For dispersive waves cg ≠ c
could be greater or less, depending on...

cg = c For non-dispersive waves;    
eg:   deep water waves (dispersive), cg = 1 / 2c, energy  goes slower, wave crests appear, 
move through, and disapear.
eg:   shallow water waves are non-dispersive
eg:  tsunami are non-dispersive, b/c of wavelength
eg.  internal gravity waves, 2D, energy goes at cross angle  (?)

Apply this concept to the discrete solutions of advection eqn.   

∂c '
∂k

< 0, therefore⇒  cg < c;  we already know c est is smaller than exact.

we could get a sign change, then they could go backward.  (?)
Fig 4
• note it changes sign;   
• this explains this phenomenon.
- once LF code is writen, it is easy to apply it to spike.
• you end up w/ a wave train, ...
• it's as if the disturbance is ratiang energy backward, 
in a front, 
Note 1B, if we use 4th order, it improves at first, but near 2Δx, the neg slope is
    even more neg, thus the
∴  thus no method that ever uses centered diff will improve thisproblem
 higher the order, steper the slope, faster waves will prop upsteam
This is only a proble w/ steep gradients,   if we did not have 
Next time:   upstream diff (1st order accurate).  This is the springboard to semi-lagrangian etc..
it gets rid of those waves, but produces an effect which is almost the oppposiste of 
• Cenetered always has even number trunc erros
• 1st order have odd

 

 
 
 



 
Feb 28  
Hw 4   notes 
 
Q1:  recursion formula produces the numerical solution 
 
Analytic solution = algebraic sol that solves the recursion formula 
Usually you do not have analytic solution. 
Ie.  get the sol. From 2 diff ways, sols should be exact 
yn = ar+

n + b−
n , a,b,r± are functions of ωΔt  

 
Q2:  if abs r is > 1, then sol grows 
 
DISPERSION
fig. 1 
• the greater the oder on centered diff, the worse the neg error grows,

Uncentered differencing

e.g. 'upstream' differencing   Fig 2{ } • downstream diff doesn't make sense
• assume c > 0
uj
n+1 − uj

n

Δt
+ c

u j
n − uj−1

n

Δx
= 0 ⇒ uj

n+1 = uj
n − cΔt

Δx
u j
n − uj−1

n( )
Conditionally stable:  stable if  0 ≤ cΔt

Δx
≤ 1

Conclusions: See Steff.  Fig 3; { }
• no neg values!! ∴  it is possible to craft a solution that preserves the sign ***
  imp if we advecting density for example
• do not see waves downstream waves
• this behavior is very diff from before.
• the solution is exhibiting spatial dissipation;  it is losing ground quickly
Now, We want a method that works for anything;   See Duran  fig.  2.13a

Dispersion
-------------
________

⎫
⎬
⎭

Diissipation  ...................
b) Intermediate solution:   improvement out to 5 grid pints

Almost same  
_._._._._._. exact
_________   4th

⎫
⎬
⎭

                       ---------------   2nd order
  upstream        ................... 1st order, extreme reduction in amplitude;  wipes out everything
• 4th order ⇒ improvement over 2nd order
• 1st order:  
Uncenterd:  produces dissipation
Centered:  all produce dispersion,  no dissipation to 
odd:  have dissipation built in

 

 



 
Summary:
• people try to find balance between dissipation & dispersion
• no perfect method:  impossible to advect 2Δx spike

Upstream differencing uj
n+1 = uj

n − cΔt
Δx

u j
n − uj−1

n( )
uj
n+1 = uj

n − cΔt
Δx

u j
n − uj−1

n( )
uj
n+1 = cΔt

Δx
u j−1
n + 1- cΔt

Δx
⎛
⎝⎜

⎞
⎠⎟ uj

n

• this is a weighted avg.  avg must be between 2 numbers fig4{ }
•min uj−1

n ,uj
n{ }   ≤ uj

n+1 ≤ max uj−1
n ,uj

n{ }
• what does this say about sign?  suppose uk

n ≥ 0 for all k
⇒ then uk

n+1 ≥ 0 for all k
• If we keep avging, then max point keeps coming down;  

• if cΔt
Δx

 becomes neg, then we would be extrapolating

• Upstream:  not useful by itself, but useful for developing diff ideas
----
Atm:  if we use centerd diff:  easy to get wave dispersion
• sometimes we want to add in dissipation;  then, use a scheme that has dissipation built in
   prob, we do not have control.  so, you could add dissipation term, just to smooth out 
   solution.  
• this is all about compromise

 

 
 
 
Test: 
 
• re.  spike, show what happens if we have scheme with: 
- dispersion 
- dissipation 

 



 
March 7 ARTIFICIAL DISSIPATION
Scale-dependent dissipation.  want:
→ damp out short λ
→ small damping for longer λ
Goal:  get amplitude ~ e−dkt   Fig .1{ }
Have something the multiplies the certain kΔx  by a damping factor.
Methods for damping out shorter wavelengths:
• upstream diff, only stable if wind doesn't change for example.  thus , not the best solution.
• Diffusion:  add diffusion term;

Diffusion Equation: ∂u
∂t

= ν ∂2u
∂x2 1− D( ),

u x,0( ) = A0e
ikx

Look for solutions of the following form (has same spatial charaecterisitcs)
u x, t( ) = A t( )eikx 1( )
dA
dt
eikx = υA t( ) −k2eikx⎡⎣ ⎤⎦ ⇒

dA
dt

= −υk2A⇒ A t( ) = A0e
−υk2t

Then substitute into 1( ) :⇒ u x, t( ) = A0e
−υk2t eikx

We get cos & sin waves, amplitude depends on time. Fig2{ }
Preferentially damps out smaller scale

 

Example: Fig3{ }
u x,0( ) = A1e

ik1x + A2e
ik2x

u x, t( ) = A1e
−υk1

2t eik1x + A2e
−υk2

2 t eik2x

• k2 component is being damped much faster:  A2e
−υk2

2 t eik2x

Suppose:  k2 = 10k& A2 = A1

ie.  initial amplitudes are equal
Then take ratio of 2 amps

A2 t( )
A1 t( ) =

A2e
−100υk1

2t

A1e
−υk1

2t
= e−99k1

2t

Bigger λ   will get damped much more.  Higher wavenumber component
is disapearing compared o other component
• Diffusion is a smoothing process.   short λ  creates unsmooth effect
smalll scale stuff is selectively damped.  We are left w/just the long λ.
However long wavelengths  get slightly damped, but leess so.  If we go out
far enough, 
We get smoother soln.  Diff attacks high wave number selectively, (ie 2Δx,  3Δx)
which is what we want

 

 
 



Goal:  Combine advection and difffussion
∂u
∂t

+ c
∂u
∂x

= υ ∂2u
∂x2

Diff is not real, we add it in for computatinal purposes.  We are smoothing out 
soln.  Need to take υ to be small.  If it were too large, even long wave stuff would
be quickly damped out.  Sole purpose dampen high wave numbe stuff, 
leave in low wave number stuff.  Fig 4{ }
2 ways to do artificial dissipation:
1) Add diffusion term to centered diff scheme
2) upstream:  automatically comes w/ diff scheme.  only problem it is only stable if
   wind comes in 1 direction only (doesn't change)
---------

4th derivate diffusive term:  ∂u
∂t

= −γ ∂4u
∂x4

u x,0( ) = A0e
ikx

⇒ u x,t( ) = A0e
−γ k4 teikx

• the k 4  term drops off much faster than k2  term, ∴  better
k 4  takes out smaller chunk of long wavelength stuff.  
Idea:  selectivel attack high wavenumber, leave low wavenumber 
stuff alone
Antidote to disspersion.

 

 

March 12     Centered Differencing for Advection

→ dispersion
→ short-wavelength "noise"
• To damp noise, add a diffusive term
∂u
∂t

= advection term + difffusion term

• Diffusion → scale-selective dissipation high wavenumbers damped most( )
• Diffusion term acts as a filter:  filters out noise w/out affecting longer λ( )
• This is more elegant, less brutal (use FFT to remove everything from that  end of spectrum)
Diffusion Terms :

≈ ∂2ℓu
∂x2ℓ , ℓ = 1,2, 3,...

• more difficult to program as l gets bigger;   6 is a popular one
• if l=2,  call it a 4th derivative filter. l=3,  call it a 6th derivative filter.

Finite-differencing: Systematic aproach

δ xu( ) j ≡
uj+1 2 − uj11 2

Δx
≅ ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟ j

→ δ x
2u( ) j ≅

∂2u
∂x2

⎛
⎝⎜

⎞
⎠⎟ j

 

 
 
 



δ xu( ) j ≡
uj+1 2 − uj11 2

Δx
≅ ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟ j

→ δ x
2u( ) j ≅

∂2u
∂x2

⎛
⎝⎜

⎞
⎠⎟ j

δ x
2uj

= δ x δ xu j( )⇒δ x

u j+1 2 − uj11 2

Δx
⎛
⎝⎜

⎞
⎠⎟
⇒ 1

Δx
δ xu j+1 2 −δ xu j11 2( ) do whatever 

operator says

= 1
Δx

u j+1 −δ xu j

Δx
−
uj − uj−1

Δx
⎛
⎝⎜

⎞
⎠⎟
⇒ δ x

2uj =
uj+1 − 2uj + uj−1

Δ2x
 

• most people use 4th & 6th, (not the 2nd as often)
Durran
uj = A t( )eikx Subst into difference eqn

→ dA
dt

= −γ non-neg. expression in kΔx( )A  − γ non-neg. expression in kΔx( ) =
 damping rate

• Adding diffusive term to do damping, 
• γ  is an adjustable constant
• Durran graphs coeff, can normalize it.
• Fig 1:  Compare filters
   2nd order has too much damoing in long λ  section
   4th is an improvement
    6th is even better (very little damping for long range, then 
         strongly damp waves w/ λ  between 4Δx&2Δx

− more problematice at boundaries;   have 6 exceptional points
• perfect filter would be nodamping, then sharp damping.  It drops off the table
• we want to not lose ampl in long λ  component.
• adding diff filter to remove high ____noise is very common.
• Aselin filter does the same thing but in time.  (LF switches sign)

 



 

Mote Book:   chapt.  by Williamson;  JS does not like it

SHALLOW WATER EQNS TWO VARIABLES
Useful in Atm science b/c there are these terms:
• Advection
• PGF
• divergence
Assumptions :
• depth is small compared to ;  vert scale ≪ horizontal
   Shallow water:  elipses are very flat, just line,   vs.
   Deep water waves:   particles travel in circles/full elipses
• ∴ ignore vert accelerations;

• PG ∼ ∂h
∂x

;    pressure is proportianal to depth above it.

• PGF = −g ∂h
∂x

Advantages :
• Hydrostatic assumption
• Simplest set of eqn that allow one to model PGF & divergence
• Can be solved analytically.  
• waves can propagate in 2 directions;   can even model reflections,  standing waves,

intereference.
Equations :
Assumptions:
   - 1-D
   - no rotation
− linearized.

  - h,&u   have to remain small
Variables:  u,h   These are perturbation values

1( ) ∂u
∂t

+U ∂u
∂x

= −g ∂h
∂x

−g ∂h
∂x

= PGF  term;  U  is constant

2( ) ∂h
∂t

+U ∂h
∂x

= −H ∂u
∂x

−H ∂u
∂x

=  Divergence term

Finite differencing of shallow - water eqns
Method 1
  • LF time diff, 2nd order centered in space 

1( )uj
n+1 − uj

n−1

2Δt
+U

uj+1
n − uj−1

n

2Δx
= −g

hj+1
n − hj−1

n

2Δx

2( ) hj
n+1 − hj

n−1

2Δt
+U

hj+1
n − hj−1

n

2Δx
= −H

uj+1
n − uj−1

n

2Δx
Fig 3:  staggered grid gives you more accurate phase

 

 
 



 
Goals:
• get best representation for phase speed
   → staggered grid gives best representation
March 14:     Notation

δmxu j
n ≡

u
j+m 2

n − u
j−m 2

n

mΔx

δ ptu j
n ≡

uj
n+ p 2 − uj

n− p 2

pΔt
Note : reg forward diff could be written in this shorthand:  δ tu j

n+1 2

eg.:  Advection Equation

• Leapfrog + 2nd order centered spatial diff
   δ2tu j

n + cδ2xu j
n = 0

• Leapfrog + 4nd order centered spatial diff

   δ2tu j
n + c 4

3
δ2xu j

n − 1
3
δ4 xu j

n⎛
⎝⎜

⎞
⎠⎟ = 0

Shallow Water eqns

• looking for wave-like solutions
every travelling wave looks like:
Variables:  u,h   These are perturbation values

1( ) ∂u
∂t

+U ∂u
∂x

= −g ∂h
∂x

−g ∂h
∂x

= PGF  term;  U  is constant

2( ) ∂h
∂t

+U ∂h
∂x

= −H ∂u
∂x

−H ∂u
∂x

=  Divergence term
  

1( ) ∂u
∂t

+U ∂u
∂x

= −g ∂h
∂x

2( ) ∂h
∂t

+U ∂h
∂x

= −H ∂u
∂x

→
u = aeik x−ct( )

h = beik x−ct( )

⎧
⎨
⎪

⎩⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

→ c =U ± gH Spceial case

H should be small compared to λ
1st RHS term  __________
2nd RHS term ->  divergence
waves come from div & conv,
you can tell which term gives us waves,
they are markers  {26 min.    fill in}
Finite diff example:   Leapfrog+2nd order space

 

 
 



 
fillin & chaeck  SW prime eqhs
1'( )δ2tu j

n +Uδ2xu j
n = −gδ2xhj

n

2'( ) ______________________
To do stability analysis  ()
Look for wave soln, want to get phase speed
If complex c_..=>  growing soln;    unstable (2 roots)
Re sults : {36min, fig1}
instead of c we have

U + gH
Δt
Δx

< 1

meaning :Δxspeedreltofluid + veloffluid :
40 +10 = 50m / s
butifupsteeam,thensubtract
30 −10 = 20
• this give us a restriction.  we can rewrite it

U + gHΔt < Δx
ie.  dist can't go farther than 1 gris step, else unstable

STAGGERED GRID Fig 2{ }
calculate  h (p in the atm)

• how to calculate PGF( ) j
n = −g

hj+1 2
n − hj−1 2

n

Δx
= −gδ xhj

n

Div
term

⎛
⎝⎜

⎞
⎠⎟ j+1/2

n

= −H
uj+1
n − uj

n

Δx
= −Hδ xU j+1 2

n

Compare Trunc errors:  unstaggered vs stagggered 
• Staggered should be more accurate
1) Unstaggered.  evaluate deriv at  (fig 3) 
∂h
∂x

⎛
⎝⎜

⎞
⎠⎟

Tr =
hj+1 2
n − hj−1 2

n

2Δx
−

∂h
∂x

⎛
⎝⎜

⎞
⎠⎟ j

=
1
6
∂3h
∂x3 Δx

2 + .... • 2ndorder

 

 
 



2)Staggered
∂h
∂x

⎛
⎝⎜

⎞
⎠⎟

Tr =
hj+1 2
n − hj−1 2

n

Δx
−

∂h
∂x

⎛
⎝⎜

⎞
⎠⎟
=

1
6
∂3h
∂x3

Δx
2

⎛
⎝⎜

⎞
⎠⎟

2

+ ....

Tr =
1

24
∂3h
∂x3 Δx

2

• Tr stag( ) = 1
4

*Tr unstaggered( )
• b / c we are closer to the lim it,
•   almost like we got something for nothing
• sameexceptreplaceinΔx with 
•  we get same result for the divergence term: improved accuracy
• if this is what we want,if we study waves,
  want the best rep of ______speed as possible
• fill in ______(56 min)
Limitations?   
Unstaggered vs.  staggered stability

Un : U + gH
Δt
Δx

< 1

St : U + gH
Δt
Δx

<
1
2

•   ie... for a given del x, del t is 1/2   of what is was for the unstag grid
   t will take twice as many time steps to get to the same place
that is the proce we pay
but accuracy is up by 4,   other is by 2,
so we are still l ahead of the game.
Question: how imp ois it to get most accurate phase speed possible

Phase speeds { fig4}

•   Computed c are dispersive,   

cun
c

=
sin kΔx
kΔx

, cst
c

=
sin kΔx

2
⎛
⎝⎜

⎞
⎠⎟

kΔx
2

⎛
⎝⎜

⎞
⎠⎟

Recall:   0 < kΔx ≤ π

Group velocity of 2Δx wave

Summary • Staggered:   improvement the calc/sim of waves
• price:  time steps are limited.  but if we want accuracy, we have to pay some price.
→ cg  of 2Δx wave (worst one)
•cg,u = −c (200% error)
•cg,st = 0 (100% error)

 

 
 



Staggering:  get improvement 
• with many variables it gets more complicated 
• very popular 
• the c grid gives the best gravity waves   ? 
 
 
 



 
March 19
Fill in 1st 10 min from Emerson.
HW7:  get notes from Emerson

 

 
Time-diff Advection Diffusion  
Forward U S  
Leapfrog S  U  
    
    

U=Unstable 
S= conditionally Stable) 
 
{fig 1) 
get note 2 fromn EL?
LF with lagged diffusion (evaluate it at time n −1)
• Conditionally stable
• diff term effcts stab condition:  maes it stricter,   reduces max Δt
∂u
∂t

+ c ∂u
∂x

= υ ∂2u
∂x2

uj
n+1 − uj

n−1

2Δt
+ c

u j+1
n − uj−1

n

2Δx
= υδ x

2uj
n−1

above is not rel to Q3
Hw 7, Q3  (~ 13 min)
• when c=0, just do straight forward diff. 

uj
n+1 − uj

n−1

Δt
= −γ 4δ x

4uj
n

•if we put in any advection, it will blow up.
• Alt: option:  use implicit for time differencing.  We will not do it now.  Prob:
   it leads to a set of linear eqns

SPECTRAL MODELS
•  Steeper learning curve:  need to know about fourieer series etc.
• 

 

 
 
 



 

 

March 21
{ fig.1}
fill in from emerson
• Vectors
• Basis
• Dot Product

• Orthogonal 

∴  Vj  can be written as dot products

vj =
v ⋅b
!
j

b
!
j ⋅b
!
j
= v ⋅b
!
j

b
!
j

2

•   you get projection on basis vector.
• only numerator couns
• a vector is 0 if and only of each component is zero.

V
"!
= 0 iff V

"!
⋅b
!
j = 0  all for j  iff dot product   of any basis is zero 

 Complex vectors

x ⋅ y = xi yi
*

i=1

n

∑

x
! 2

= x
!
⋅ x
!
= xi xi

*

i=1

n

∑ = xi
2 > 0,   where * = complex conjugate

i=1

n

∑
•we want to get a positive number
• evertything is same in complex space, except need to use the complex conjugate.
   def of dot product is slightly different.
Fill in .....

Function Spaces =  set of functions (s) satisfying

1) If f ∈S,  then α f ∈S  (α  is a scalar)
•ie any multiple must be in set
2) If f1 ∈S& f2 ∈S  then f1 + f2 ∈S  
•   we can crearte linear combinations
• ex :  if we had set where all values were defined by bound, 
ie.  we can not have bounded sets
Example :  

 

 
 
 
 



 

Example:
S2π = f :  f x + 2π( ) = f x( )  all x{ }
Basis of S2π

eikx ,  k = 0, ±1, ± 2,...{ }
 If f ∈S2π , f x( ) = ake

ikx

k=−∞

∞

∑ , this is fourier series

For f  to be real-valued:  a−k = ak
*

ake
ikx + a−ke

− ikx = ake
ikx + ake

ikx( )*
= 2 Re ake

ikx⎡⎣ ⎤⎦
 • this is fourier series.  iit is a lot easier to compt with complex numbers.

f x( ) = a0 + ake
ikx

k=1

∞

∑ + cc.⎡
⎣⎢

⎤
⎦⎥
,  ak  are usually complex;   cc=complex conj

• we can think of akas component
• inf initebasis?

f x( ) = ake
ikx

k=−∞

∞

∑ = 0 if all ak = 0

Theorem: f x( ) ≡ 0 iff ak=0  for all k.

Dot Product
(Inner product)

< f , g > ≡ f x( )g* x( )dx
0

2π

∫

< f , f > = f x( ) 2 dx > 0 unless f x( ) ≡ 0
0

2π

∫
Def:  f & g are orthogonal if < f , g > = 0
• Stef chose orthogonal basis before.
Functions eikx  are orthogonal
Proof:  <eikx , eilx >

= eikx eilx( )*
dx

0

2π

∫   helps to work with exponentials since we can combine them

= eikxe− ilxdx =
0

2π

∫  ei k−l( )xdx
0

2π

∫
Suppose k ≠ l

ei k−l( )xdx
0

2π

∫ = 1
i k − l( ) e

i k−l( )x 2π
0

= 1
i k − l( ) ei k−l( )2π −1⎡⎣ ⎤⎦ , goes to zero b/c it is periodic, =1

= 0
k = l  case

<eikx ,eilx >= 1dx
0

2π

∫ = 2π

•wehave an orthog basis,
• the norm squared = 2

 



 
 
Theorem:

f x( ) = ake
ikx

k=−∞

∞

∑ ,      ak =  Fourier components

<f ,eilx >

= ak < e
ikx ,eilx >

k=−∞

∞

∑
=al 2π

al =
1

2π
<f , eilx > 

= 1
2π

f x( )e− ilxdx
0

2π

∫ ,   l = 0, ±1,±2,

• above = 0 when
• we are projecting the function onto one of th basiss vector,
• it picks out that 1 F coeef.
•wehae 2 reps of the funct:  1)    2) coef

f x( ) = ake
ikx

k=−∞

∞

∑

ak =
1

2π
f x( )e− ikxdx

0

2π

∫

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 
• there is assymetry, inf series on top, integral below
•  this is classic Fourier series

•this has taken us from physical space to wavenumber space.
• This is a form of a FT

• f x( )− − − − − f − − − − − − > ak{ }
 phys wavenumber space

  < − − − − − f −1

• spectral refers to the above coeef
•  if we know the coef, we have to go in the other direction, that woul be inverse transform
------
f x( ) ≡ 0 iff
ak = 0 for all k
⇒< f ,ak >= 0 for all k
•Genmethod :   \
• tells us we can porb not get exact soln., have to do truncation & ∴

 

 
 



 
Spectral Method  AKA projection method(here applied to lin advection eqn)

∂u
∂t

+ c ∂u
∂x

= 0

u x + 2π , t( ) = u x, t( )   all x, t
u x,0( ) = f x( )
•wewantittobe identically zero;  to do that , this statement would hvae 
  to be:
• Equivalent statement:

< ∂u
∂t

+ c ∂u
∂x

,eilx > = 0    all l& t

• ifthatiszero,thishastobe zero
• if we want function to be zero, than it will be if we can show that alll the inner 

prod are zero

u x, t( )= ak t( )eikx
k=−∞

∞

∑  here F coef are functions of time.

∂u
∂x

= ikak t( )eikx
k=−∞

∞

∑
• Beauty of it:   when we diff (can do it term by term),  all we do is bring down a factor
  of ik
∂u
∂t

+ c ∂u
∂x

,

=
dak
dt

+ ikcak t( )⎡
⎣⎢

⎤
⎦⎥k=−∞

∞

∑ eikx

< ∂u
∂t

+ c ∂u
∂x

, eikx > = 2π dak
dt

+ ilcal
⎡
⎣⎢

⎤
⎦⎥
= 0  for all ==l;

• this is the key.  proj on basis gives ODE
when we have Fseries, and we project it on lth,
then all we get is the lth ______
• these are supposed to be zero

dal
dt

+ ilcal = 0,   l = 0, ±1,±2,...

•this is inf set, but they are decoupled;  we can solve each ne separately.
•   we only hvae to solve for neg numbers.
• we have an infinite set of ODEs
− > al t( ) = al 0( )e− ilct

=> u x, t( ) = al 0( )eil x−ct( ) = f x − ct( )
l=−∞

∞

∑
•General : fill in from Emerson{ }
•have to truncate
• 

 

 


