
     

Gravity :  F
!"
=

Gmems

r 2
; Centrifugal :   Fc

!"!
=

msv
2

r
; Geopotential: dΦ J/kg or m2 / s2⎡⎣ ⎤⎦ ≡ gdz = −αdp

Momentum,  Linear :  p
!#
= mV
!#

; Angular : L
!#
= r
#
× p
!#

   L = mVR

Coriolis parmater :   fc ≡ 2Ωsinφ s-1⎡⎣ ⎤⎦; − fcv ≅ − 1
ρ
∂p
∂x

; fcu ≅ − 1
ρ
∂p
∂y

Hydrostatic balance :  
∂p
∂z

= −ρg;
∂Φ
∂p

= − 1
ρ

; PGF : − 1
ρ
∂p
∂x

m s-2⎡⎣ ⎤⎦  

z1 =
RT
g

ln
ps

p1

⎛

⎝⎜
⎞

⎠⎟

Geostrophic Wind :  V
!#

g ≡ k$ × 1
ρ fc

∇
!#

p

Rossby Number :  R0 ≡ U 2 L( ) fcU( ) ⇒ U fc L( )
IGL :    pV = mRT ⇒ p = ρRT

Continuity Equation :   
1
ρ

dρ
dt

= −∇
!#
•V
!#

;
∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟ p

+ ∂ϖ
∂p

= 0

Divergence : V
!#
= axî + byĵ, a > 0,b > 0( ), ∇

!#
•V
!#
=
∂vx

∂x
+
∂vy

∂y
= a + b > 0

Thermodynamic :   de = dq + dw; dq = du − dw; dq = cv dT + pdα

cp

dT
dt

−αϖ = dq
dt

 

2 2

2

1

1 2 ;

1 2

tan 1 12 sin 2 cos OR approximation:  

tan

a
a

r
r a a

rx

d
p

dt

d
p

dt
d

p
dt
Du uv uw p Du p

v w F fv
Dt a a x Dt x
Dv u
Dt a

ρ

ρ

ρ
φ φ φ

ρ ρ
φ

= − + +

= − − × + +Ω + = +Ω

= − − × + +

∂ ∂− + = − + Ω − Ω + − = −
∂ ∂

+ +

!"
!" !!"

!"
!!" !" !" !" !!" !" !" !"

!"
!!" !" !" !!"

∇

∇ Ω

∇ Ω

V g F

V V g R F g g R

V V g F

2 2

1 12 sin OR approximation:  

1 2 cos

ry

rz

p

vw p Dv p
u F fu

a y Dt y
Dw u v p p

g u F g
Dt a z z
p RT
d
dt
dq dT dp

c
dt dt dt

φ
ρ ρ

φ ρ
ρ

ρ
ρ ρ

α

∂ ∂= − − Ω + = − −
∂ ∂

+ ∂ ∂− = − − + Ω + ⇒ = −
∂ ∂

=

= − •

= −

!" !"
∇ V

 

     

Total Derivative :   
DT
Dt

= ∂T
∂t

+V
!"
•∇
!"

T ⇒ Dt
Dt

= ∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

where     u = dx
dt

; v = dy
dt

; w = dz
dt

Gradients :  ∇
!"
≡ ∂
∂x

i# + ∂
∂y

j# + ∂
∂z

k#; ∇
!"

(constant) = 0

∇
!"
φ = ∂φ

∂x
i# + ∂φ

∂y
j# + ∂φ

∂z
k# ⇒∇

!"
(scalar) = vector

∇
!"
•V
!"
= ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

⇒ ∇
!"
• vector( ) = scalar

∇
!"
•∇
!"
φ = ∇2φ = ∂2φ

∂x2
+ ∂2φ
∂y2

+ ∂2φ
∂2 z

Curl : ∇
!"
×V
!"

: ∇
!"
×V
!"
= 0 ⇒V

!"
 is irrotational, no vorticity;

∇
!"
×V
!"
> 0 ⇒ cyclonic (NH CCW); < 0 ⇒ Anticyc (CW)

∇
!"
×V
!"
= ∂w

∂y
− ∂v
∂z

⎛
⎝⎜

⎞
⎠⎟

i# − ∂w
∂x

− ∂u
∂z

⎛
⎝⎜

⎞
⎠⎟

j# + ∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟

k#

Vorticity : ζ = ∂v
∂x

− ∂u
∂y

= k# • ∇
!"
×V
!"( )

Divergence :  ∇
!"
•V
!"
= 0 ⇒V

!"
 is non divergent;  

+ ⇒ divergence; − ⇒ convergence

∇
!"
•V
!"
= ∂

∂x
i#, ∂
∂y

j#, ∂
∂z

k# • ui#,v j#, wk# = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

; ∇
!"

H •V
!"

H = ∂u
∂x

+ ∂v
∂y

 

2 2

2 2

Mass M         Kg
Length      L           m
Time         T= L U       s
Temp.       K          K
Velocity     L T U m s
Accel         L T m s
Force         ML T  Kg m s  N (Newton) 
Pressure        

=

=

Dimensions and units

( ) ( )
-1 -2 -2

2 4 2 2 4 2 

3 3 3 3 3 6 3 3 6 3

      Kg m s   = N m  = Pa 
9 5 C 32 F; F 32 5 9 C;  K= C +273.15

1 cm 10 m   1 m 10  cm
1 liter 10 cm 10 m ; 1 m 10 cm   1cm 10  m
1atm = 1013.25m

−

− −

⋅ ⋅
× ° + = ° ° − × = ° °

= ⇔ =
= = = ⇔ =

Temperature :
Area :  
Volume :  
Pressure :  

( )

5

-3 -3 -3
0

-1 -1 -1 -1

-1 -1 -1 -1

b = 1013.25hPa = 101.325kPa = 1.01325 10 Pa
1 hPa = 100 Pa

1 gm cm 1000 kg m 1.225 kg m
1004 J kg K 1.00464 J gm K  const for IG

717 J kg K  = 0.7176 J gm K ,  (

p

v v

c
uc c
T α

ρ

×

= = ⋅
= =

∂⎛ ⎞= = ⎜ ⎟∂⎝ ⎠

Density :

6

-1 -1

for any substance)

6.37 10 m
287.053 J kg Kd

a
R
= ×
= ⋅ ⋅

 

( )

( ) ( )

( )
( )

1 2 3

2 2 2
1 2 3

0 & are orthogonal

cos cos 0

The length/magnitude of the vector , ,  is

    

0

0

a b a b

a b a b ab

a a a a

a a a a

a b b a

a b c a b c

a a

a a

c a b ca cb

θ θ θ π

• = ⇒

• = = ≤ ≤

=

= + +

+ = +

+ + = + +

+ =

+ − =

+ = +

Properties of vectors
! ! ! !

! ! ! !

"

"

" " " "

" " " " " "

" " "

" " "

" " " "

( )
( ) ( )
( ) ( ) ( )

1 1 2 2 3 3

1 2 3 1 2 3

sin

, ,

c , , , ,

 2 vectors are  if & only if they are scalar 

       multi

c d a ca da

cd a c da

a b c a c b a b c

a b a b

a b a b a b a b

a c a a a ca ca ca

θ

+ = +

=

× × = • − •

× =

+ = + + +

= =
♦

Vector multiplication with Scalar

" " "

" "

! ! ! ! ! ! ! ! !

! ! ! !

" "

"

#

( )ples of eachother 2 =

1

1,0,0    0,1,0    0,0,1     

Ex: 1, -2,6  = 2 6

a b

au a
a a

i j k

i j k

−

= =

= = =

− +

Unit Vectors : 

" "

"
" "
" "

" " "

" " "

 

1 2 3 1 2 3

1 1 2 2 3 3

2

Definition: If , ,  &  , ,  

then the dot product of  &  is the scalar:

   

  

  

a a a a b b b b

a b

a b a b a b a b

a a a

a b

= =

⋅ = + +

⋅ =

⋅ =

Dot Product (Scalar Product, Inner Product)

Properies of the Dot Product

! !

! !

! !

! ! !

! !

( )
( ) ( ) ( )

   

     +   

      

0  0

If  is the angle between the vectors  & ,  then:

  
   cos cos

b a

a b c a b a c

ca b c a b a cb

a

a b

a ba b a b
a b

θ

θ θ

⋅

⋅ + = ⋅ ⋅

⋅ = ⋅ = ⋅

⋅ =

⋅⋅ = ⇒ =

Dot Product Theorem 1 & Corollary

Orthagonal

! !

! ! ! ! ! ! !

! ! ! ! ! !

! !

! !

! !
! ! ! !

! !

2 vectors  &  are orthagonal 

if & only if:     0

a b

a b⋅ =

ity  
! !

! !

 

1 2 3 1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

1 2 3
2 3 1 3 1 2

1 2 3 1 2 3
2 3 1 3 1 2

1 2 3

1 2 3

1 2 3

 If , ,  &  , ,  
 , ,

  
   

  
   

  
     

   
  

a a a a b b b b
a b a b a b a b a b a b a b
a a a

b b b b b b
b b b a a a

c c c c c c
c c c

i j k
a b a a a

b b b

= =
× = − − −

= − +

× =

Cross Product (Vector Product)

Orthago

! !
! !

! ! !
! !

( )

Vector  is orthag to both &

If  is the angle between the  & ,  
so 0 ,  then:     sin

Two nonzero vectors  &  are parallel if & only

a b a b

a b
a b a b

a b

θ
θ π θ

×

≤ ≤ × =

nality  
Cross Product Theorem & Corollary

! ! ! !

! !
! ! ! !

! !

( ) ( ) ( )
( )

( )
( ) ( )
( ) ( ) ( )

 if:
0

 If , , &  are vectors and  is a scalar, 
then:    

   

      

a b
a b c d

a b b a
da b d a b a db

a b c a b a c

a b c a c b c

a b c a b c

a b c a c b a b c

× =

× = − ×
× = × = ×

× + = × + ×

+ × = × + ×

⋅ × = × ⋅

× × = ⋅ − ⋅

Theorem :

! ! !
! ! !

! ! ! !
! ! ! ! ! !

! ! ! ! ! ! !

! ! ! ! ! ! !

! ! ! ! ! !

! ! ! ! ! ! ! ! !  

 
 



Governing equations in vector form, rectangular & pressure coordinates
1 2 2p

d D
p

dt Dtρ
= − − × + + = − Φ − Ω×

BASIC EQUATIONS :  Rect height coord (RHC), Isobaric (IC), Natural (NC)

 Horizont
!" !"

!!" !" !" !!" !" !"V VV g F V∇ Ω ∇

 1

 1 0

 

where:

p

p p

p
g

z p
p RT p RT
d u v
dt x y p

dT dp dq dT dq
c c
dt dt dt dt dt

ρ
ρ

ρ ρ
ρ ϖ

ρ

α αϖ

∂ ∂Φ= − = −
∂ ∂
= =

⎛ ⎞∂ ∂ ∂= − • + + =⎜ ⎟∂ ∂ ∂⎝ ⎠

− = − =

al 
 Momentum Eqn.
Hydrostatic

 balance
Ideal Gas Law
Continuity 

 Equation
Thermodynamic  

 Energy Eqn.

!" !"
V∇

# #

   

 Omega vertical motion.   change following
where  ; 2 sin

 the motion. Same as  in RC.
1 

p p p p p

c

g g pc
c

d
u v

dt t x y p
pdp

f
w dz dtdt

p f
f

ϖ

ϖ φ

ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = Ω
=

≡ × = × Φ
 Geostroph!" !" !" !"

V k V k∇ ∇

The kinematic properties of the VF are determined by its divergence & curl, i.e. by differential 
operators. &∇ • ∇×

ic 
 relationship

PROPERTIES OF THE VELOCITY FIELD (VF)

NATURAL (INTRINSIC) COORDINAT

!" !"
V V

 Natural coordinates are flow
following coordinates used to better understand how vorticity & divergence arise in flows.

 The locus of successive positions of a moving fl

E SYSTEM (NC) :

Trajectory (Path) : uid parcel. @ any given instant
the velocity vector of the parcel is tangent to the trajectory. Trajectories are lines connecting the
positions of a fluid parcel at successive instants in time, ie. the actual path followed by the parcel.

A line whose tangent at any point in a fluid is parallel to the instantaneous velocity 
vector of the fluid at that point (at an instant in time). Points 
Streamline : 

on the streamline are at the same time.
NCS is an orthogonal right-handed system.
The wind vector defines the unit tangent vector at . The normal coordinate, n, increases
to the left of the wind d

P
!" #
HV t

# #
# # # # # # # # # #

irection, and with .  is normal to and is positive to the left of flow.
The unit vectors obey the relations: , ,   &  is  in NC.
Sign convention: (applies to both Northern & 

× = × = × =

!"

# # # # #
Hn n V

t n k n k t k t n i jk tnk

#

Southern Hemispheres (NH & SH)
CCW:  >0  , , , 0 CW: 0 , , , 0

 is positive when when center of curvature is in the positive  direction.

 Curvat1 1

s s s s

s
s

d K K R R d K K R R
R

d
K K

ds R s R

θ θ

θ θ

⇒ > < ⇒ <

∂= = = =
∂

Trajectory Streamline Remarks
n

# #

# #

# #

# #

ure of path/trajectory;   i.e. change in 
 wind direction downstream along trajectory

Change in wind direction normal to flow

s

d
d
d

K K
ds s
d d
dn dn n n
d

KV
dt t t

θ θ

θ θ

θ

∂= =
∂
∂= =
∂
∂ ∂= =
∂ ∂
∂ ∂= =
∂ ∂

Geos

# #

# #

# #

# #

t tn n

t tn n

t tn n

t tn n

2

2

 Straight line flow  
  1Coriolis force;  = PGF

 Circular flow paths in the anticyclonic sense: 
0   

0, 0, 0

c g
c

c

R
f V p

f Vn
n n

V V
f V R

V f RR f

V
R

ρ

⇒ → ±∞
∂Φ= − ∂Φ ∂= =∂

∂ ∂

+ = = −
> > <

= −

trophic flow  

Inertial flow 

Cyclostorphic flow
1 2

2 2 2

 LHS = Centrifugal force; RHS = PGF  Cyclostrophic  
 Force balance normal to flow direction wind speed.

   
2 4

Around Low : gradient wi

c

V R
n n

V fR f R
f V V R

R n n
p

∂Φ ∂Φ⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠

∂Φ ∂Φ+ = − = − ± −
∂ ∂

Gradient wind Balance

nd is weaker than geostrophic wind, ie. geostrophic wind
is an overestimation.  Around High: gradient wind is stronger the geostophic.

 

[ ]
 This is velocity divergence, 

 NC  
 not mass divergence: 

1st term = longitudinal divergence, and it is >0 if the wind speed in  the downstream 
direction along the s

H H
V V
s n

θ
ρ

∂ ∂• = +
∂ ∂ •

↑

DIVERGENCE :
!" !"

!"V
V

∇
∇

treamlines.  2nd term = transversal divergence, and it is >0 if the
streamlines "diverge" in the direction normal to the flow.

1) it is possible for there to be non-div. flow even if Non - divergent flow :

1 2

the streamlines
seem to indicate divergence or convergence, ie. when the 2 terms above are balanced.
2) If an area does not change it numerical value, ie. A =A  (although may change shape),
then the flow

( )
 is non-divergent.  , spreading out of streamlines, does not by 

itself imply divergence. Difluence is measured by  only.
0 0, 0

0
H H

H H

difluence
V n

n V s
θ

θ

∴
∂ ∂

• < ⇒ ∂ ∂ < ∂ ∂ <
• > ⇒ ∂

Convergence :  
Divergence :  

!" !"
!" !"V

V
∇

∇ 0, 0

When horizontal flow is such that 0

everywhere, flow is non-divergent. =  is the requirement for exactness of the 

differential .

H H

n V s
u v
x y

u v
x y

vdx udy d vdx udy

θ

ψ

∂ > ∂ ∂ >
∂ ∂• = + =
∂ ∂

∂ ∂−
∂ ∂

− ∴ = −

STREAMFUNCTION :
!" !"

V∇

#

2

.  when 0

 streamfunction
velocity components can be expressed as ,  

 L T
For nondivergent flow, the velocity field can be represented by  SF alone.

H H

H

dx dy
x y

u v
y x

u v

ψ ψ

ψψ ψ

∂ ∂= + ∴ • =
∂ ∂

=∂ ∂= − =
⎡ ⎤∂ ∂ ⎣ ⎦

= + = −

!" !"

!" #

V

V i j

∇

# #

#
2 2

2

 OR   

0

The isopleths of  are streamlines, & are always tangent to the instantaneous wind vector
. However the representa

H H

H H H H H

H

y x

u v
x y x y y x

ψ ψ ψ

ψ ψ ζ ψ

ψ

∂ ∂+ = ×
∂ ∂

∂ ∂ ∂ ∂• = + = − + = = • × =
∂ ∂ ∂ ∂ ∂ ∂

!"#

!" !" !" !"

!"

i j V k

V k V

V

∇

∇ ∇ ∇

tion of  by alone is only possible if 0. 
Streamlines show direction of flow and the speed is inversely proportional to the spacing of 
the streamlines.

 A vector measure of the 

H H Hψ • =

VORTICITY :

!" !" !"
V V∇

tendency of a fluid parcel to rotate about an axis
through its center. Vorticity is the curl of the velocity field.  It is an extension of the concept
of the angular velocity of a fluid parcel as it rot

# ( )

ates about some axis.
;  is a 3D vector;   defines a vector field.  

We are primarily interested in the tendency of fluid parcels to rotate about their local verticals:

= v u
x y

ζ

= ×

∂ ∂• × = −
∂ ∂

$ !$ !$ $ $

!$ !$

q V q q

k V

∇

∇
Rectangular coordinates 

 is relative vort since  is the relative wind (to rotating Earth)
0 CCW rotation (NH: cyclonic, around low  system; SH: anticyclonic)
0 CW rotation (NH: anticyclonic, aro

p
ζ

ζ
ζ
> ⇒
< ⇒

!$
V

und high  system; SH: cyclonic)
Rotation means rotation about an axis through its center-of-mass.  There are circular flows for 
which 0, and there are straight-line flows for which 0

H H

p

V

ζ ζ= ≠

= =
!$ !$# #V t t∇ #  means diff in the downstream direction, cross-steam

 Vertical component of relative Vorticity in natural coordinates  
 

 1st term is curvature term, 2nd is shear terms
s

s n s n
V V VVK
n R n

ζ

∂ ∂ ∂ ∂+ ⇒
∂ ∂ ∂ ∂

∂ ∂= − = −
∂ ∂

∴

n

 is due to the superposition of 2 effects: one is the effect of the , the
other is the effect of the  normal to the flow.

Straight parallel flow can possess vorticity.  

streamline curvature
speed shear

ζ

∴

( )

The flow has no curvature, but if there is a variation
of speed normal to the direction of flow,  will not be zero.

Curved flow may be irrotational =0  when the curvature effect is exactly balanced by
ζ

ζ∴  shear
The sign of the curvature

 0; 0; 0; 0 
dominates, 0 
The sign of the curvature

 0; 0; 0; 0 
dominates

s s
s

s s
s

p K K
R n

p K K
R n

ζ
ζ

ζ

∂> = > < ⇒ >
∴ >∂

∂< = < > ⇒ <
∂

Low  sys (typical) in NH :

High  sys (typical) in NH :

!$ !$
!$

!$ !$
!$

V VV

V VV
, 0 ζ∴ <

 

   

ΔTEMPERATURE
dT
dy

: Δy = R ⋅sin Δφ( ); dT
dx

: Δx = Rcosφ sin Δλ( )    φ = latitude, λ=longitude

Sector of a circle:s = rθ θ in rads( )
THERMAL WIND TW( ) :

Ug p1( )−Ug p0( ) = − R
fc

∂T
∂y

p

ln
p0

p1

⎛

⎝⎜
⎞

⎠⎟
 LHS = UT ; NH:  fc > 0  

∂T ∂y  <0 going poleward.  ∴UT > 0

Vg p1( )−Vg p0( ) = R
fc

∂T
∂x

p

ln
p0

p1

⎛

⎝⎜
⎞

⎠⎟

Ω = 2π 86400sec =  7.27 ×10-5sec-1  

( )
! ( )2

A scalar function whose gradient is proportional to 

L T If 0

& are no longer independent & must satisfy: .  the spatia

H

H H
v u
x y

v uu v
x y

φ

φ ζ ∂ ∂⎡ ⎤= = • × = − = ⇒⎣ ⎦ ∂ ∂
∂ ∂= ∴
∂ ∂

VELOCITY POTENTIAL : 

Irrotational flow

"#

"# "#
V

k V∇

!

! ( )
2 2

2

l distribution of the

wind field must be such that the shear & curvature effects balance exactly. 

   so that &

0

H H

H H H H H

u v
x y x y

v u
x y x y y x

φ φ φ φφ

φ φζ

∂ ∂ ∂ ∂= = + = =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= • × = − = − = • =
∂ ∂ ∂ ∂ ∂ ∂

"# "# !

"# "# "# "# "#

V i j

k V V

∇

∇ ∇ ∇

( ) When the flow is irrotational, it can be represented by Velocity Potential  alone.
The isopleths of , equipotential lines, are  to the flow when is given in terms of 
alone.  Negative V.P. ce

H

φ

φ
φ φ

∴
⊥

"#
V

nters  regions of large-scale divergence. Positive VP conv.
  A special class of flow which can be represented 

either in terms of a SF alone or a VP alone.  const eψ

⇒ ⇒

=
Non - Divergent &Irrotational flow :

{ }
2

verywhere  to constant
Horizontal Equations of motion in Natural Coordinates

 Perpendicular to the flow.
  Along the flow.

Centrifugal + Coriolis = PGFc
V V f V
t s R n

φ⊥ =

∂ ∂Φ ∂Φ= − + = −
∂ ∂ ∂

 

 



WAVES
Properties of Mechanical Waves (From "University Physics")
• Transverse waves: The elements in the medium vibrate perpendicular 
    to the direction that the wave travels.
• Longitudinal waves: The elements in the medium vibrate parallel to
   the direction that the wave travels.
• A harmonic wave and an impulsive disturbance travel at the same
   speed through a medium.
• The wave speed is independent of the amplitude of the wave.
• The wave speed is independent of the frequency of the disturbance.
• The speed v, frequency f , and wavelength λ  are related by the equation

   v m
s

⎡
⎣⎢

⎤
⎦⎥

 =  λ m[ ] ⋅ f s-1⎡⎣ ⎤⎦  Wavelength-frequency relation

Amplitude :  max. magnitude of displacement from equilibrium
Wavelength :  Distance from one crest to the next.

Period :  T s
cyc

⎡
⎣⎢

⎤
⎦⎥
= 1

f
; ie. the time for one cycle.

Frequency :  f cyc
s

= Hz⎡
⎣⎢

⎤
⎦⎥
= 1

T
;  # of cycles of oscillation that occur/sec

Angular freq :  ω rad
s

⎡
⎣⎢

⎤
⎦⎥
= 2π f = 2π

T
;  

 # of radians/sec this corresponds 
 to on the reference circle.

We may regard the number 2π  as having units of rad/cycle.
Simple harmonic motion (SHM) : 

ax =
d 2 x
dt 2 = −ω 2 x = k

m
x; ω = k

m

k N
m

⎡
⎣⎢

⎤
⎦⎥
= force constant always > 0( )

f = ω
2π

= 1
2π

k
m

;          T = 1
f
= 2π

ω
= 2π k

m
Periodic waves

v = λ
T
⇒ v = λ f

 The wave pattern travels w/ constant speed v & 
 advances a distance of 1 wavelength λ  in a time 
 interval of 1 period T

When a sinusoidal wave passses through a medium, every particle in the
medium oscillates w / simple harmonic motion w / the same amplitude
& frequency. The frequency is a property of the entire periodic wave 
because all points on the string oscillate with the same frequency. 
Wave Functions, eg. y = y x, t( )
Phase angle φ  indicates the initial position of the vibrating object -
its relative position in the vibrational motion at time zero.
Sinusoidal wave moving in the positive x direction :

y x, t( ) = Acos ω x
v
− t⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⇔ y x, t( ) = Acos 2π f x

v
− t⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⇔

y x, t( ) = Acos 2π x
λ
− t

T
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⇔ y x, t( ) = Acos kx −ωt( )

by substituting  f = ω
2π

 into v = λ f ⇒ ω = vk

Wave number :  k = 2π
λ

m-1⎡⎣ ⎤⎦
Sinusoidal wave moving in the negative x direction :

y x, t( ) = Acos 2π f x
v
+ t⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⇔ y x, t( ) = Acos 2π x

λ
+ t

T
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⇔

y x, t( ) = Acos kx +ωt( )
Sinusoidal wave moving in negative or positive x direction :
y x, t( ) = Acos kx ±ωt( )  where kx ±ωt( )  is called the phase.  It

plays the role of an angular quantity rad[ ],  and its value for any values
of x and t  determines what part of the sinusoidal cycle is occurring at
a particular point and time.  
Phase speed v :  For a wave moving in the pos. x direction, kx −ωt =
constant.  Taking the derivative w/ respect to t  produces:
dx
dt

= ω
k
= v   

 

Standing waves (SW)
The distance between successsive nodes (or successive antinodes) is λ 2
The distance between a node and the adjacent antinode is λ 4
N = nodes.  The 2 waves have the following charactarisitics at nodes:
 •  Exactly out of phase ⇒  total wave at that instant is zero
 • Resultant displacement is always zero, displ. is equal  & opposite
 •∴  they cancel eachother out ⇒  destructive interference
A = antinodes.  The 2 waves have the following charactaristics:
 •  Displacements are always identical
 •  Resultant displacement is always twice the ampl. of each indiv.
 •  ⇒  constructive interference
 •  When they are exactly in phase, resultant displacement is @ maximum.
We can derive a function for the standing wave by adding the functions 
for 2 waves with equal amplitude, period, & wavelength traveling in 
opposite directions.  We noted that the wave reflected from a fixed end is
inverted, so we give a neg. sign to one og the waves.
y1 x, t( ) = −Acos kx +ωt( )   incident wave traveling left{ }
y2 x, t( ) = Acos kx −ωt( )     reflected wave traveling right{ }
We can rewrite each of the cosine terms by using the identities for the
cosine of the sum & difference of 2 angles: 
cos a ± b( ) = cosa cosb ± sin asinb    Applying these & combining:

y x, t( ) = 2Asin kx( )sinωt  Standing wave on a string, fixed end @ x = 0
The positions of nodes for standing waves are the points for which 
sin kx = 0,  so the displacement is always zero.  This occurs when 

kx = 0,π ,  2π ,3π ,...    or using k = 2π
λ

, x = 0, π
k

, 2π
k

, 3π
k

, ...

x = 0, λ
2

, 2λ
2

, 3λ
2

,...

Standing wave: 
• wave shape stays in same position
• oscillating up & down as described by the sinωt  factor.
• each point undergoes SHM, but all points between nodes osc. in phase
• doesn't transfer energy from 1 end to the other ⇒ avg transfer rate = 0
    the 2 waves indiv. carry = amounts of power in opposite directions. 
Traveling wave:
• phase differences between oscillations of adjacent points
• does transfer energy
WAVES - Met 121B

k = 2πa cosϕ
λ

 Wavenumber: length of the spatial
 domain divided by the wavelength

v m
s

⎡
⎣⎢

⎤
⎦⎥

=λ m[ ]× f s-1⎡⎣ ⎤⎦   Wave speed = wavelength × frequency 

Φ(x, y, t) = Φ0 + ′Φ sin[k(x − ct)]cos(ly)
 ′Φ = amplitude, c = phase speed
k  = wave number in x direction

 l = wave number in y direction
   

 

 



     

WAVES

Wavenumber: length of the spatial domain divided by the wavelength  k = 2πacosϕ
λ

v
m
s

⎡

⎣
⎢

⎤

⎦
⎥=λ m⎡⎣ ⎤⎦ × f

Hz
s

⎡

⎣
⎢

⎤

⎦
⎥   Wave speed = wavelength × frequency 

Φ(x, y,t) = Φ0 + ′Φ sin[k(x − ct)]cos(ly)
 ′Φ = amplitude, k  = wave # in x direction
 l = wave # in y direction; c = phase speed;

c = ν
k

,  where c = phase speed, ν nu{ } = frequency, k = wavenumber

CIRCULATION THEOREM            C = C p,T ,φ, A( )

C = V
!"

Γ
#∫ • d r

" m2

s
⎡

⎣
⎢

⎤

⎦
⎥

← Definition of Circulation.  It is a macroscopic measure of 

 rotation for a finite area of the fluid.⇒ C = u dx
Γ
#∫ + v dy

Γ
#∫ + wdz

Γ
#∫

Sign convention: Always ∫  CCW around Γ :+ result ⇒CCW net flow; & vice versa

DCa

Dt
= D

Dt
U
!"

a • d l
"

#∫ = − 1
ρ#∫ dp  m2

s2

⎡

⎣
⎢

⎤

⎦
⎥

 Circulation Theorem. (Absolute Circulation)  
 RHS is solenoidal term (ST)

For a barotropic fluid, the density is a function only of pressure, & the ST is zero, ∴, the
absolute circulation is conserved following the motion. 
In a baroclinic fluid, circulation may be generated by the ST (ex: sea-breeze circulation)

Ce = 2Ω sinφ A = 2ΩAe

 Circulation in the horizontal plane due to the rotation of the  

Ae = Asinφ = projection of area A in the equatorial plane

C = Ca −Ce = Ca − 2ΩAe

 It is more convenient to work w/ relative circ, C,  as opposed
 to absolute, Ca ,  since a portion of abs (Ce ) is due to E's rotation

DC
Dt

= − dp
ρΓ
#∫ − 2Ω

DAe

Dt
 Bjerknes circulation theorem

 

− dp
ρΓ
#∫ =  Solenoidal term.  − 2Ω

DAe

Dt
= stretching term

For a barotropic fluid , the density is a function only of pressure, so the solenoidal term = 0
 Stretching term
  change w/ time:

 DC
C1

C2∫ = −2Ω dAeAe1

Ae2∫ ⇒ C2 −C1 = −2Ω A2 sinφ2 − A1 sinφ1( ) m2  s-1⎡⎣ ⎤⎦

∴C changes if either A or φ  changes.  If ΔA = 0 &parcel moves north ⇒C ↓

If parcel stays at same latitude: C2 −C1 = −2Ωsinφ A2 − A1( ) If A↑, then C ↓

If A↓, then C ↑,  analagous to angular momentum conservation & changes.
Mean tangential velocity : V = C circumference( ) m s⎡⎣ ⎤⎦

CIRCULATION & VORTICITY ΔC = ∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟
ΔxΔy ⇒ ΔC = ζ ⋅ΔA

C = −bhl  where vorticity = -b
Whenever the circulation ≠ 0, there must be a non-zero net  vorticity within Γ. Similarly,
when C = 0,  there can be no net  vorticity inside the curve.

δC = uδ x + v + ∂v
∂x

δ x
⎛
⎝⎜

⎞
⎠⎟
δ y − u + ∂u

∂y
δ y

⎛
⎝⎜

⎞
⎠⎟
δ x − vδ y ⇒ δC = ∂v

∂x
− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟
δ xδ x

δC
δ A

= ∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟
≡ ζ

∴for a finite area, C  divided by A gives the average normal 
 component of vorticity in the region. Vorticity of a fluid in solid-
 body rotation is 2×  the angular velocity of rotation. Vorticity may 
∴ regarded as a measure of the local angulare velocity of the field.

 

     

VORTICITY - The microscopic measure of rotation in a fluid, is a vector field defined
as the curl of vorticity. Absolute: ω

!"
a ≡ ∇
!"
×U
!"

a Relative: ω
!"
≡ ∇
!"
×U
!"

 ω
!"

 =q
"

∴  ω
!"
= ∂w

∂y
− ∂v
∂z

, ∂u
∂z

− ∂w
∂x

, ∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟

 Vertical components of abs. & rel vort are:

 η ≡ k# • ∇
!"
×U
!"

a( ) ζ ≡ k# • ∇
!"
×U
!"( ) s-1⎡⎣ ⎤⎦

ζ > 0⇒ cyclonic (CCW) motion/storms in NH.  ζ < 0⇒ cyclonic storms in SH.
∴  Distribution of ζ  is an excellent diagnostic for weather analysis.  η tends to be 
conserved following the motion at mid-trop levels ⇒ this is basis for forcast model w/ BVE
k# •∇
!"
×U
!"

e =2Ωsinφ ≡ f  

f = 2Ωsinφ = 2Ω
!"
• k#

 f NH( ) > 0; f SH( ) < 0

 Planetary vorticity is the local vertical component of the vorticity 
 of the Earth due to rotation,  = the coriolis parameter,  the  

 component of the planetary vorticity 2Ω
!"

 along the local vertical.

∴ η = ζ + f , ζ = ∂v
∂x

− ∂u
∂y

, η = ∂v
∂x

− ∂u
∂y

+ f

D(ζ + f )
Dt

= −(ζ + f ) ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
− ∂w

∂x
∂v
∂z

− ∂w
∂y

∂u
∂z

⎛
⎝⎜

⎞
⎠⎟
+ 1
ρ2

∂ρ
∂x

∂p
∂y

− ∂ρ
∂y

∂p
∂x

⎛
⎝⎜

⎞
⎠⎟

diverg/stretch
tilting
solenoidal

f y( )⇒ v df
dy

= Df
Dt

 Coriolis parameter depends only on y. . 

D(ζ + f )
Dt

= − f ∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
= Horizontal diverg

BAROTROPIC VORTICITY EQUATION 
The vertical component of absolute vort is conserved following horizontal motion
dH (ζ + f )

dt
= ∂ζ
∂t

+ u ∂ζ
∂x

+ v ∂ζ
∂y

+ v ∂ f
∂y

= 0
 Local relative vort changes are caused by 
 absolute vorticity advection only

For mid-latitude β-plane the eqn has the form: ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
ζ + βv = 0

∂ζ
∂t

= −u ∂ζ
∂x

− v ∂ζ
∂y

− v ∂ f
∂y

; ζ = ∂v
∂x

− ∂u
∂y

= ∂2ψ
∂x2 + ∂2ψ

∂y2 ≡ ∇
!"2
ψ

∂
∂t

∇
!"2
ψ = −uψ

∂
∂x

∇
!"2
ψ − vψ

∂
∂y

(∇
!"2
ψ + f )   uψ = − ∂ψ

∂y
,vψ = ∂ψ

∂x

dH (ζ + f )
dt

= −u
∂ ζ + f( )

∂x
− v

∂ ζ + f( )
∂y

 

∂ζ
∂t

=− u
∂ ζ( )
∂x

− v
∂ ζ( )
∂y

− vβ ⇒ ∂ζ
∂t

≈ −vβ where β = ∂ f
∂y

= 2Ω
a

cosφ

v < 0 v > 0
CCW

vβ < 0 vβ > 0

∴  ∂ζ
∂t

 >0 on  LHS of vortex;   RHS ∂ζ
∂t

 <0

dH (ζ )
dt

= −u
∂ ζ( )
∂x

− v
∂ ζ( )
∂y

− vβ  

Internal gravity waves
∂u
∂t

+ u ∂u
∂x

+ w ∂u
∂z

+ 1
ρ
∂p
∂x

= 0

∂w
∂t

+ u ∂w
∂x

+ w ∂w
∂z

+ 1
ρ
∂p
∂z

+ g = 0

∂u
∂x

+ ∂w
∂z

= 0

∂θ
∂t

+ u ∂θ
∂x

+ w ∂θ
∂z

= 0, 

where   θ = p
ρR

ps

p
⎛
⎝⎜

⎞
⎠⎟

κ

⇒ lnθ = γ −1 ln p − lnρ + constant

 

   

Rossby Number :  One way to estimate the importance of the earth's rotations
on fluid motions is to calculate the RN, which is simply the ratio of the wind accel

to the Coriolis acceleration: 
U 2

L
fcU

= U
fc L

= Ro. For typical synoptic scale motions

it turns out that the wind accel is small (~10% or less) compared to the Coriolis, &
the wind is nearly geostrophic.  Thus, for geostrophic balance to be valid, the Ro 
must be small (~0.1), or the accel of the winds are ~ an order of magnitude smaller 
than the coriolis accel.  In the tropics however, this is not the case, and Ro is in the 
order of 1, which means that the flow accel & the coriolis accel are about the same.  

 

Horizontal Momentum Equations in log pressure coordinates with curvature terms
Since there is a single monotonic relationship between pressure & height, we can 
use p as the independent vertical coordinate and height (geopotential) as a dependent
variable.  The thermodynamic state of the atmosphere is then specified by the fields of
Φ x, y, p, t( )  and T x, y, p, t( )

DV
!"

Dt
+ f k# ×V

!"
= −∇
!"
Φ , f k# ×V

!"
= f

i# j# k#

0 0 1
u v w

= f i# 0w − v( )− j# 0w − u( ) + k# 0v − 0u( )⎡⎣ ⎤⎦

⇒ fu j# − fvi#

−∇
!"
Φ = − ∂Φ

∂x
+ ∂Φ
∂y

⎡
⎣⎢

⎤
⎦⎥

Du
Dt

− fv + ∂Φ
∂x

= Fx ⇒ Du
Dt

− f + u tanφ
a

⎛
⎝⎜

⎞
⎠⎟ v +

Φλ

acosφ
= Fx

Dv
Dt

+ fu + ∂Φ
∂y

= Fy ⇒
Dv
Dt

+ f + u tanφ
a

⎛
⎝⎜

⎞
⎠⎟ u +

Φφ

a
= Fy

 



  

Sign conventions for vorticity, coriolis, & cyclonic flow
North Hem                      South. Hem
f > 0 f < 0
ζ > 0 ζ > 0
CCW around Low           CCW around High
Cyclonic                          Anti-cyclonic
∂T
∂y p

< 0 ∂T
∂y p

UT > 0 UT
---------------------------------------------------------
ζ < 0 ζ < 0
CW around High             CW around Low
Anti-Cyclonic Cyclonic
---------------------------------------------------------
Ridge   ∩                         Trough ∩
Trough ∪                         Ridge   ∪
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In both hemispheres:
• Cyclonic = rotating in the same sense as the Earth's rot. Ω
• Coriolis & Cyclonic always have the same sign
• In westerly flow, a trough (& enhanced cyclogenesis) develops on 
   the leeward side of the mountain range.
• Growing baroclinic wave tilts westward w/ height

Note: UT ∝ − 1
f
∂T
∂y

Vorticity ζ = V
Rs

− ∂V
∂n

ζg ≡
∂vg
∂x

−
∂ug
∂y

Potential Vorticity

P ≡ ζθ + f( ) −g ∂θ
∂p

⎛
⎝⎜

⎞
⎠⎟
= Const.  K kg-1  m2  s-1⎡⎣ ⎤⎦  ←  Ertel's PV

1 PVU = 10−6  K kg-1  m2  s-1  
 PVU < 2 ⇒ troposphere
 PVU > 2 ⇒ stratosphere

In a homogenous incompressible fluid:
ζ + f
h

= η
h
= Barotropic PV = Constant    

ζ1 + f1
h1

=
ζ2 + f2
h2

1)ζg 2)∇
!"
ζg 3)−V

!"
g •∇
!"
ζg 4) − vg

df
dy

1) < 0 > 0 < 0
2) 0 > 0 0 < 0 0
3) 0 < 0 0 > 0 0
4) 0 > 0 0 < 0 0
Horiz gradient of vort is zero, does nothing to ↑  or ↓  vort, 
it can not intensify the wave. To intensify wave, need to have 
gradient of vort change
NorthSouth gradient of planetary vort is + in both hemispheres.
Useful equations dy = adφ

β s-1m-1⎡⎣ ⎤⎦ ≡
df
dy

= d2Ωsinφ
adφ

= 2Ωcosφ
a

, ug = − 1
f
∂φ
∂y

vg =
1
f
∂φ
∂x  

Dynamical Eqns in Pressure Coordinates, neglecting 
curvature
dV
dt

= −∇Φ− 2Ω×V
∂Φ
∂p

= − 1
ρ

p = ρRT
∂u
∂x

+ ∂v
∂y

⎛
⎝⎜

⎞
⎠⎟ p

+ ∂ϖ
∂p

= 0

cp
dT
dt

−αϖ = dq
dt

where: d
dt

⎛
⎝⎜

⎞
⎠⎟ p

= ∂
∂t

⎛
⎝⎜

⎞
⎠⎟ p

+ u ∂
∂x

⎛
⎝⎜

⎞
⎠⎟ p

+ v ∂
∂y

⎛
⎝⎜

⎞
⎠⎟ p

+ϖ ∂
∂p

⎛
⎝⎜

⎞
⎠⎟ p

and ϖ = dp
dt

Divergg ≡
∂ug
∂x

+
∂vg
∂y

∂ω = −∇
!"
V
!"
∂p ⇒ ω p( ) = −

∂ua
∂x

+
∂va
∂y

⎛
⎝⎜

⎞
⎠⎟p0

p

∫ dp

Quasi - Geostrophic Approximation
dgVg
dt

= − f0k ×Va − βyk ×Vg ,    where:

dg
dt

⎛
⎝⎜

⎞
⎠⎟ p

= ∂
∂t

⎛
⎝⎜

⎞
⎠⎟ p

+ ug
∂
∂x

⎛
⎝⎜

⎞
⎠⎟ p

+ vg
∂
∂y

⎛
⎝⎜

⎞
⎠⎟ p

∂ua
∂x

+
∂va
∂y

⎛
⎝⎜

⎞
⎠⎟ p

+ ∂ϖ
∂p

= 0 , Vg ≡
1
f0
k ×∇Φ

∂
∂t

+Vg ⋅∇
⎛
⎝⎜

⎞
⎠⎟ − ∂Φ

∂p
⎛
⎝⎜

⎞
⎠⎟
−σϖ = κ J

p
, where:  κ ≡ R / cp

∴  4 eqns & 4 unknowns:Φ,Vg ,Va , &ϖ
===================================
Quasi - Geostophic Vorticity Equation
dgζ g
dt

= − f0
∂ua
∂x

+
∂va
∂y

⎛
⎝⎜

⎞
⎠⎟
− βvg

∂ζ g
∂t

= −V
!"

g ⋅∇
!"

(ζ g + f0 )+ f0
∂ϖ
∂p

, s-1⎡⎣ ⎤⎦

where:  f0
∂ϖ
∂p

=  divergence term

−Vg ⋅∇(ζ g + f0 ) =  
 Advection of abs. vort. 
 by the geostophic wind

∂ζ g
∂t

= −V
!"

g ⋅∇
!"
ζ g − βvg + f0

∂ϖ
∂p

, s-1⎡⎣ ⎤⎦ ,  where: 

−V
!"

g ⋅∇
!"
ζ g = −ug

∂ζg

∂x
− −vg

∂ζg

∂y
= Adv. of geo. rel. vorticity

βvg = advection of planetary vorticity
Short Waves (L<3000 km): Adv. of ζ g   
dominates over adv. of planetary vort ⇒  wave moves east
Long Waves (L>10000 km): Advection of  planetary vort 
dominates over adv. of ζ g  ⇒  wave moves westward

Quasi - Geostrophic Geopotential Tendency Equation (QGGTE)

∇2 +
f0

2

σ
∂2

∂p2

⎡

⎣
⎢

⎤

⎦
⎥ χ = − f0Vg ⋅∇

1
f0

∇2Φ + f
⎛
⎝⎜

⎞
⎠⎟
+
f0

2

σ
∂
∂p

-Vg ⋅∇
∂Φ
∂p

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

A( ) ∇2 +
f0

2

σ
∂2

∂p2 =
Local geopotential tendency
which is proportional to − χ;

χ ≡ ∂Φ
∂t

B( ) − f0Vg ⋅∇
1
f0

∇2Φ + f
⎛
⎝⎜

⎞
⎠⎟
=

Distribution of vort. advection
∝  to advection of abs. vorticity
Dominant forcing term in upper trop

C( ) f0
2

σ
∂
∂p

-Vg ⋅∇
∂Φ
∂p

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

Differential temp. advection (DTA)
DTA ∝ χ.  DTA AKA thickness advection.

(C) is the major mechanism for the amplification or decay of mid-lat synoptic
scale systems.  This term MUST be nonzero in order for a midlatitude 
synoptic-scale baroclinic wave to intensify through baroclinic processes.
(C) involves the rate of change with pressure of the horizontal thickness 
advection. The thickness advection tends to be strongest in the lower 
troposphere below the 500mb  trough's and ridgelines in a developing baroclinic 
wave.(above 500 mb temperature gradients are weaker and geopotential and 
temperature isolines become more parallel) . In contrast to term B, the forcing 
of term C is concentrated in the lower troposphere. Term C will deepen upper 
level troughs and build upper level ridges in developing waves.
∴  χ > 0 ⇒ warm advection ⇒Φ↑  w/ time
χ < 0 ⇒ cold advection ⇒Φ↓  w/ time
If the distribution of Φ is known at a given time, then terms B and C 
may be regarded as known forcing(intensification) functions , and the 
GTE is a linear partial diff eq in the unknown χ.
Quasi - Geostrophic Analysis w / the QGGTE
• Geostrophic advection of absolute vorticity: 1) Short waves move eastward
2) Upper-level vorticity advection does not affect the strength of midlatitude 
     synoptic_scale baroclinic waves
• Differential thickness advection: 1) Horizontal temperature advection must 
     be nonzero in order that a midlatitude synoptic-scale baroclinic wave 
    intensify through baroclinic processes
Quasi - geostrophic approximation  
for synoptic scale motions, the twin requirements of hydrostatic and geostrophic 
balance constrain the baroclinic motions so that to a good approximation, the 
structure and evolution of the 3-D flow field is determined approximately by 
the isobaric distribution of the geopotential [θ(x, y, p, t)]
Requirements: 1) Geostrophic or almost(quasi) Geostrophic balance
2) Hydrostatic balance  3) Mid-latitude synoptic scale motions/systems
4) Strong baroclinicity 5) isobaric coordinate system
QGVE states that the local rate of change of geostrophic vorticity
 is given by the sum of the advection of the absolute vorticity by the geostrophic 
wind plus the concentration or dilution of vorticity by stretching or shrinking of 
fluid columns(the divergence term/effect). It is useful because if the evolution of 
vorticity can be predicted, then the evolution of the geopotential field can 
be predicted along with the geostrophic winds and temp distributions. Vorticity 
advection will only move the wave pattern, it will not strengthen the disturbance.  
POTENTIAL VORTICITY (PV) is always in some sense a measure of the ratio 
of the absolute vorticity, η, to the effective depth of the vortex.  
Where the effective depth is just the differential difference between potential 
temp. surfaces measured in pressure units: (-∂θ /∂P).  Or a simplified version 
is if you assume a homogenous incompressible fluid, the horizontal depth must 
be inversely proportional to the depth, h, of the fluid parcel. This yields:
(ζ  +  f ) / h = η / h = const.   
Ex: A trough always develops on the leeward side of a mtn. in both hemispheres 

 



  

∂ζ
∂t

= −u ∂ζ
∂x

− v ∂ζ
∂y

− vβ,    
 Barotropic Vorticity Eqn, where ζ = ∇2ψ
 u = −∂ψ ∂y , v = ∂ψ ∂x

if ψ = −uy + u k( )sin kx( )
PERTURBATION METHOD
• Useful for the qualitative analysis of atmospheric waves, eg. the stability
   of a given BS flow w/ respect to small superposed perturbations
All field variables are divided into 2 parts:
   1) Basic state portion (BS): assumed to be independent of t & longitude
   2) Perturbation portion: local deviation of the field from the basic state
eg. 1: To create zonal avg: u x, y, t( )⇒ u y( ) + ′u x, y, t( ),  where
u y( ) = basic state;  ′u x, y, t( ) = perturbations from the zonal mean
eg. 2: Complete zonal vel. field: 

u x, t( ) = u + ′u x, t( )
 u =  time & longitude-avrgd zonal vel.
 ′u = deviation from that average

Then, inertial acceleration is:

u ∂u
∂x

⇒ u ∂u
∂x

+ u ∂ ′u
∂x

+ ′u ∂u
∂x

+ ′u ∂ ′u
∂x

 
 u  is constant so deriv =  0
 4th term can be neglected

Basic assumptions of perturbation theory:
1) Each dependent variable can be represented as the sum of some avgerage
    state (basic state) and a deviation from that state (perturbation)
2) Both the total field (BS + pert) & the BS fields satisfy the governing eqns
3) Perts are sufficiently small that all terms w/ products of pert quantities 
    can be neglected
Then, the non-linear governing eqns are reduced to linear diff. eqns in the
perturbation variables in which the BS variables are specified coefficients.
Solutions of perturb eqns then determine charactaristics such as: propogation
speed, vertical structure, & conditions for growth & decay of the waves.
DISPERSION & GROUP VELOCITY
Dispersive Waves :   (Rossby & gravity waves are dispersive)
• Phase speed of the waves change with their wavelength 
• k = k(c)
• Speed of wave group is different from the avg phase speed of the indv
   Fourier components
• Shape of a wave group is not constant as the group propagates.  The group 
   generally broadens in time, ie. the energy is dispersed.
• For propagating waves, ν  (frequency) depends on the wave # of the pert. 
   as well as the physical properties of the medium. Thus, b/c
   c = ν k ,  the phase speed depends on k,  except in special case where ν ∝ k( )
 ∴  For waves in which c varies with k,  the various sinusidal components get
  dispersed in time.
• In synoptic-scale Atm disturbances, the group velocity > phase velocity.
• Cgx = ∂ν ∂k  Group velocity
Non - Dispersive Waves :
Shallow water gravity waves
c = u ± gH  (SW wave speed), valid only for waves where λ  ≫  H

SHALLOW WATER MODEL & EQNS :  (u & v momentum, continuity) 
∂u '
∂t

− f0v ' = −g ∂h '
∂x

; ∂v '
∂t

+ f0u ' = −g ∂h '
∂y

; ∂ ′h
∂t

+ H ∂u′
∂x

+ ∂v′
∂y

⎛

⎝
⎜

⎞

⎠
⎟ = 0

∂ v eqn( )
∂x

−
∂ u  eqn( )

∂y
⇒ ∂ζ′

∂t
+ f0

∂u′
∂x

+ ∂v′
∂y

⎛

⎝
⎜

⎞

⎠
⎟ = 0 

 ′h Holton( ) = η (Gill)

Solve for diverg in continuity & subst into above 
= linearized potential vorticity conservation law

⇒ ∂ζ′
∂t

−
f0

H
∂ ′h
∂t

= 0  

Adjustment to balance : non - rotating fluid under the effect of gravity
∂2h '
∂t 2 − c2 ∂2h '

∂x2 + ∂2h '
∂y2

⎛
⎝⎜

⎞
⎠⎟
= 0,

 Eqn in 1 variable only, h’, 
 solutions are 2-d shallow water gravity waves

• Steady state solution is rest with a flat free surface
• Adjustment is accomplished by shallow water gravity waves
• All initial energy is lost 
Adjustment to balance : rotating fluid under the effect of gravity
non - zero f0 ;  
∂2h '
∂t 2 − c2 ∂2h '

∂x2 + ∂2h '
∂y2

⎛
⎝⎜

⎞
⎠⎟
+ f0 Hζ ' = 0  The h’ and ζ’ fields are coupled

 

  

Assumptions: Horizontal scale is large compared w/ depth, so that 
hydrostatic approximation can be made.  1/3 of the PE released goes into
the steady geostrophic flow. The remaining 2/3 is radiated away by 
inertia-gravity waves! The Equil. state 
depends on the initial state: the connection is conservation of PV.
Note: solution could not be derived merely by setting ∂ ∂t = 0 in SW eqns
That would yield geostrophic balance and any distribution of h′  would 
satisfy SW eqns. Only by combining SW eqns to obtain PV eqn, and 
requiring the flow to satisfy PV conservation at all intermediate times,
can the degeneracy of the geostrophic final state be eliminated.
• ∂v ' ∂x − ∂u ' ∂y⇒ 5( );  subst ζ′  into 5( );  solve for Div in 3( )& subst..
Rossby Adj Problem :  an anti-cyclone is produced where the fluid height 
is elevated,where the fluid height is depressed  cyclonic rotation is observed.
ROSSBY WAVES (RW)
t0 :  ζ0 = 0.  t1 : ζ + f( )t1 = ft0   or ζ t1 = ft0 − ft1 = −βδ y
∴  δ y > 0 ⇒ζ t1 < 0; δ y < 0 ⇒ζ t1 > 0 ∴  westward displacement of the 
pattern of vort max & mins due to advection by the induced velocity.
The meridional gradient of η resists meridional displacement & provides
the restoring mechanism for RW.  c = −β k2

Free Barotropic RW (BRW)
Dispersion relationship for BRW may be derived by finding wave-type 

solutions of the linearized BVE  ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
ζ + βv = 0

u = u + u′ , v = v′ ,ζ = ∂v′ ∂x − ∂u′ ∂y = ζ′ . Define ψ ′  according to:
u′ = −∂ψ ′ dy , v′ = −∂ψ ′ dx ,   from which we see that ζ′ = ∇

!"2ψ ′

∴  perturbation form of BVE is ∂
∂t

+ u ∂
∂x

⎛
⎝⎜

⎞
⎠⎟ ∇
!"2ψ ′ + β ∂ψ ′

∂x
= 0  

We seek solution of the form: ψ ' = Re Ψ exp iφ( )⎡⎣ ⎤⎦ ,  where φ = kx + ly -νt
Subst ψ '  into pert BVE gives: −ν + ku( ) −k2 − l2( ) + kβ = 0 ⇒

ν = uk − βk k2 + l2( ); since c = ν k ,   c − u = −β k2 + l2( )  
where: ν = frequency; k& l  are zonal & meridional wave #'s respectively. 
RW: •  Propagate westward w/ respect to the mean flow •Are dispersive
• Their phase speed increases rapidly with increasing wavelength
• Typical mid-lat synoptic-scale disturbance, where l ≈ k,  & 
zonal λ ≈ 6000 km, RW speed rel to zonal flow ≈ −8 m/s
Rossby Radius of Deformation

λR ≡
gH
f0

, 
 Horizontal length scale over which the height field adjusts
 during the approach to geostrophic equilibrium.

• When scale of motion < λR : adjustment ≈ non-rotating system adjustment
• When the scale of motion > λR , Coriolis is important ⇒ geostrophic adj.
Baroclinic wave disturbances arise from a hydrodynamic instability of the 
midlatitude jet: Flow is hydrodyn.-ly unstable if  'a small disturbance intro-
duced into it grows spontaneously drawing energy from the mean flow”.
Barotropic Instability : 
• associated with the horizontal shear in a jet-like current 
• Waves grow by extracting kinetic energy from the mean flow
• African Easterly waves.
Baroclinic Instability : 
• Associated with the vertical shear of a jet-like current
• Waves grow by extracting potential energy from the mean flow
• Midlatitude baroclinic waves
Normal Mode Instability Analysis Method
Linear analysis: 1) introduce a single wave mode of the form exp[ik(x - ct)] 
2) determine the conditions for which the phase speed, c, has an imaginary 
part, which is the condition for that mode to grow

c =Um − β(k2 + λ2 )
k2 (k2 + 2λ2 )

±δ 1/2 , δ ≡ β 2λ 4

k 4 (k2 + 2λ2 )2 −
UT

2 (2λ2 − k2 )
(k2 + 2λ2 )

λ2 ≡
f0

2

[σ (δ p)2 ]
,σ ≡ −

RT0

p
d lnθ
dp

,
 UT  tells shear strength; 
 σ = Atm stability; 

Variables that determine thee sign of σ : β,UT , K , λ( )
σ < 0 :  an imaginary c, unstable mode;  σ = 0 :  marginally stable. 
σ > 0 : Stable (or neutral, or non-amplifying) waves occur
Typical mid-lat values: σ = 5° /100mb,  UT = 5.5 m/s,  Lmin = 4340 km
This ‘simple’ analysis therefore indicates that baroclinic instability is a 
primary mechanism for synoptic-scale wave development in the midlatitudes  

 



 

 

Planetary Boundary Layer (PBL)
Stable Boundary Layer (SBL)
PBL & SBL Equations:
∂A
∂t

= −∇ iVA +QA

∂A
∂t

= −∇ iVA − ′V ′A +QA

′V ′A = −KA∇A
∂A
∂t

= −∇
!"

iV
!"
A +QA

Qv = −ρaKv
∂q
∂z

V 0( ) = 0; V H( ) ≡ Vg
τ
ρa

= − ′V ′V ≠ f z( )  in SBL

τ
ρa

= − ′w ′U = f ( )′ ,

where U = u 2 + v 2

′U = ′ℓ
∂U
∂z

= − ′w

τ = ρaℓ
2 ∂U

∂z
⎛
⎝⎜

⎞
⎠⎟

2

,

ℓ = k0 z + z0( ); ℓ ≡ ′ℓ( )2

u* = τ
ρa

∂U
∂z

= u*
ℓ
= u*
k0 z + z0( )

τ
ρ
= Km

∂U
∂z
,

Km = ℓ2 ∂U
∂z

Km = u∗
2

∂U
∂z

Qm = −ρau∗
2 = −τ

1- D MODEL :  ESTOQUE 
SBL:
∂Qa

∂z
= 0,

r = KH

KM

= Inv. Pr. # =1

QA = −const ⋅ ρ ⋅u∗A*

QA = −const ⋅ ρ ⋅KA
∂A
∂z

 

 

∂A
∂z

= A*

k0z
φA

*

φh
* = φm

* = φq
* = φ* Ri( )

φ* = 1+α Ri( )( )−1
,

Forced
α = −3

φ* = f ∂θ ∂z( ) ≠ f ∂U ∂z( )

K h( ) = u∗
2

∂U ∂z( )h
K ∂A

∂z
⎛
⎝⎜

⎞
⎠⎟ h

= A*u∗

3 - D MODEL
F
m

= A⇒ F
m

= ∂V
∂t

∂V
∂t

= −V i∇V −α∇p − 2Ω×V + ga −

Ω× Ω× R( ) +υ∇2V

g z,φ( ) ≡ ga +Ce = −gk! ≈ 9.8 m s-2

∴∂V
∂t

= −V i∇V −α∇p − 2Ω×V −

gk! +υ∇2V
Continuity Eqns
1) Compressible
1
ρ
dρ
dt

= −∇ iV⇒ 1
ρ

∂ρ
∂t

+V i∇ρ⎛
⎝⎜

⎞
⎠⎟ = −∇ iV

∂ρ
∂t

= −∇ i ρV
RHS = mass convergence

2) Homogenous:  ρ = ρ t( ); ρ ≠ ρ x, y, z( )

∴∂ρ
∂t

= −ρ∇ iV

3) Steady state: ρ = ρ x, y, z( )  only;  ρ ≠ ρ t( );

∴∂ρ
∂t

= 0, → 0 = −∇ i ρV

4) Anelastic:  ρ = ρ z( )  only; 

ρa∇Η iVH +
∂
∂z

ρw( ) = − ∂ρ
∂t

= 0

5) Incompressible/non-divergent flow

   − 1
ρ
dρ
dt

= ∇ iV = 0 ⇒ zero vel. diverg.

  

Order ε
Δρ0

ρa

≡ ε ≪1

pdyn =
1
2
ρv2

PBL Continuity Eqn

∇ iV = − 1
ρ
dρ
dt

∴∇ iV = 0
Inst. flow is incompress
 to Order ε

∴∇ iV = 0
Mean flow is incompress
 to Order ε

Eqn of motion for mean flow
dV
dt

= −2Ω×V −α∇p − gk" +υ∇2V ⇒

dV
dt

= −2Ω×V −α∇p − gk" +υ∇2V − ∇ i ′V ′V

PBL hydrostatic assumption 
∂w
∂t

= −V i∇w −α ∂p
∂z

+ f#u − g +υ∇2w − ∇ i ′w ′V

⇒ 0 = −α ∂p
∂z

− g  After scale analysis

NB: ∂w
∂z

= − ∂u
∂x

+ ∂v
∂y

⎡

⎣
⎢

⎤

⎦
⎥

 i.e.  Horiz convergence
 leads to vert velocity.

Hydrostatic Eqn in PBL

α a +α 0( ) ∂p0

∂z
= −g  OR  ∂p0

∂z
= ρa + ρ0( )g

• Static variation

PBL Ideal Gas Law : ρ = p
RT

dρ
ρ

= dp
p
− dT
T

To order ε

ρ0 + ρ*

ρa

= p0 + p
*

pa

⎛
⎝⎜

⎞
⎠⎟
− T0 +T

*

Ta

⎛
⎝⎜

⎞
⎠⎟

Results:   

ρ0

ρa

= p0

pa
− T0

Ta
  

with V = 0
Static state

   

ρ*

ρa

= p*

pa
− T

*

Ta
 

Effect of V  after 
subtracting static

 

Misc. Eqns :
1
a
da
dt

= d lna
dt

 
Reynolds averaging

ab = a + a '( ) b + b '( ) = ab + a 'b '
 

 

Vector Derivatives
∇f i A = ∇ i fA( )− f ∇ i A( )

 

 



 

 

 

 
     

Curvilinear Coordinates Dutton( )
x! i = fi x1, x2 , x3( ), i = 1,2,3; NB : x! = x"  in Pileke's system

x! = f x( ) = x! x( ) ⇒  vector form of above, where function f x( )  prescribes 
1 and only 1 value of x!  for each value of x  and is such
that the 3 coordinates are independent of eachother.

• Cylindrical polar & spherical coordinates are orthogonal curvilinear coords but
not cartesian.  Orthogonal systems have distinct advantages in meteorology.

Invertibility condition:  The condition for transformation of x! i = fi x1, x2 , x3( )  to
be uniquely invertible is that the Jacobian determinant does not vanish for any x.

Jx
x! =

∂ x!1,x! 2 ,x! 3( )
∂ x1, x2 , x3( )    

 This condition also ensures that the
 new coordinates are independent. If

Jx
x!  doesn't vanish, then reciprocal =

J
x!
x =

∂ x1, x2 , x3( )
∂ x!1,x! 2 ,x! 3( )

& it can be shown that Jx
x! i J

x!
x = 1

Nonorthogonal Curvilinear Coordinates (Dutton)
When cooordinates fail to be orthogonal, we must use 2 sets of basis vectors
& 2 sets of components in order to be able to determine components with 
scalar products.  Moreover, there is no longer any advantage to having basis
vectors of unit length, & instead the magnitudes of the basis vectors will carry
the necessary information on distance scaling.
Summation Convention: requires sum on repeated indices when they appear 
on 2 quantities that are multiplied by eachother.

e.g. : A
#$

iB
#$
= Ak Bk =

k=1

3

∑ Ak Bk e.g. : A
#$

iB
#$( ) C
#$

iD
#$( ) = Ai BiC j Dj

e.g.  If A
#$
= i

j
Aj  & B

#$
= i

k
Bk  then A

#$
iB
#$
= i

j
ii

k( ) Aj Bk = δ jk Aj Bk = Aj Bj

Denominator convention: superscript appearing in denominator = subscript
Covariant & Contravariant
Expanding  x" x( )  w/ the chain rule yields the following two expansions:

dx =
∂x
#$

∂x" j
dx" j dx" i =

∂x" i

∂x j dx j = ∇x" i( ) idx
 & thus the two vectors τ

$
j &

η
$

i appear. Pielke Fig. 6.1( )

τ
$

j =
∂
∂x" j

x1i
$
+ x2 j
$
+ x3k
#$( )⇒ τ

$
j =

∂x

∂x" j
N .B., τ

$
j :

• τ
$

j reveals the variation of the position vector as it traces out a curve in which 

 x" j  varies & the other two coordinates are constant (acc. to partial deriv def )

• τ
$

j is tangent to the curve along which only x" j  varies. 

• if nonorthogonal coords, then tangent vector τ
$
3 to the curve on which x" 1 & x" 2  

  are constant does not have to coincide with the normal to the sfc x" 3 = const

• τ
$
3 must be orthogonal to the vectors η

$
1 & η
$
2  that are normal to the sfcs on 

which  x" 1 & x" 2  are constant

η
$

i = i
$ ∂x" i

∂x1
+ j
$ ∂x" i

∂x2
+ k
#$ ∂x" i

∂x3
= ∇
#$

x" i η
$

i  is normal to the sfc x" i = const.

NB :  if orthogonal coords, these 2 sets of of vectors are identical direction-wise.
Covariant & Contravariant Dutton( )
Next step is to determine how basis vectors behave under further transformation.

Let z" i =  z" i x1, x2 , x3( ),  i = 1,2,3  define another set of curvilinear coordinates

∴  the position vector differential becomes  dx =
∂x

∂z" i
d z" i=τ" id z" i

     while the coordinate differential becomes  d z" i = ∇
#$

z" i( ) i dx = η" i
i dx

But, the coordinates x! i  are also a function of x  and the relation can be inverted to

give x = x x!( ). Thus, we may find the appropriate functions so that z" i  may be 

expressed as a transformation of the x!  cooordinates in the form z" i = z" i x!1, x! 2 , x! 3( )  

Covariant & Contravariant Dutton( )  cont..

η!
i
=∇
!"
z! i= il

∂z! i

∂xl
=il

∂z! i

∂x! k
∂x! k

∂xl
= ∂z! i

∂x! k
η! k 33( )

∴ the normal vectors also have there own law of transformation, whch is evidently
different from 32( )  in both the differentiation & the summation.
        It is customary to choose the law of transformation of the tangent vectors as 
the one to compare w/ other types, & hence quantities that transform like the tangent  

vectors are called covariant.  For a scaler φ, the ∂φ ∂z! i  after chain rule becomes:

∂φ
∂z! i

= ∂φ
∂x! k

∂x! k

∂z! i
and so is covariant.
In contrast we have (below):

 fi! = ∂x j

∂x! i
f j ← Pielke( )

d z! i = ∂z! i
∂xk

dxk = ∂z! i

∂x! j
∂x! j

∂xk
dxk = ∂z! i

∂x! j
d x! j

so that the coordinate differentials transform like the normal vectors.  Such quantities
are called contravariant  to indicate that they behave like the normal vectors, not like
the tangent vectors.
Covariant & Contravariant Pielke( )

Covariant : fi! = ∂x j

∂x! i
f j ,  where fi! is a 1st order tensor 

• fi! ≡ covariant if  xi → x! i is given by above transformation
• Use of subscript denotes that fi!  is a covarient vector i.e. tensor of order 1( )  
• Superscript in the denominator of a derivative e.g. ∂ ∂x j( ) ≡ covariant, 
    by convention

Contravariant :  f! i = ∂x! i

∂x j
f j

•  f! i 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kinetic Energy

KE = 1
2
mV
!"2

→ KE
m

= 1
2
V
!"2

m2 s-2⎡⎣ ⎤⎦  Dealing w/ fluid per unit mass

MKE
m

= 1
2
V
!"2

TKE
m

= e = 1
2

′V
!"! 2

⇒ e = 1
2

′u 2 + ′v 2 + ′w 2( ) m2 s-2⎡⎣ ⎤⎦
 Mean TKE

NB : τ
!
j stress N m−2⎡⎣ ⎤⎦;    momentum [kg m s-1]

Fluxes Kinematic Flux Tensor order

F! QM{ }  momentum N m−2⎡⎣ ⎤⎦ F = F!

ρair
m2  s-2⎡⎣ ⎤⎦ 2nd 9 comp( )

or: kg m s-1( ) m2  s-1( )⎡⎣ ⎤⎦

Q! H heat J m-2 s-1⎡⎣ ⎤⎦ QH = Q! H
ρairCpair

K m s-1⎡⎣ ⎤⎦ 1st 3 comp( )

• Kinematic fluxes are in units that can be measure directly.
• Flux is the rate of transfer of a quantity across a unit area
TKE
StressRe   =  TKE        –     strain

uj′ui′ = 1
3
δ ij uk′uk′ − kijkl

∂uk
∂xl

+ ∂ul
∂xk

⎡

⎣
⎢

⎤

⎦
⎥

e = 1
2
ui′

2 → e =  summed velocity variances divided by 2

D
Dt

     

Now, apply chain rule to calculate that  τ! i =
∂x

∂z! i
=

∂x

∂x" k

∂x" k

∂z! i
=
∂x" k

∂z! i
τ" k 32( )

This relation shows that the tangent vectors have a specific law of transformation
whose characterisitics are revealed by the placement of variables & indices in the 

derivative ∂x" k ∂z! i ,  the position of variables controlling the differentiation & 
the position of indices controlling the summation.  Similarly:



 

 

 

 

 

    

VECTOR & TENSOR ANALYSIS
Temporally varying, differentiable cordinate transformations are the 
proper kinematic abstraction of both fluid motion & the motion of the
atmosphere.

∇ ≡ i! ∂
∂x

+ j! ∂
∂y

+ k! ∂
∂z

 Gradient Operator, del Operator

∇φ = i! ∂φ
∂x

+ j! ∂φ
∂y

+ k! ∂φ
∂z

 Gradient of the scalar function φ x, y, z,t( )
 • ∇φ  points in the direction in which the field φ

increases most rapidly 
• ∇p = gradient of pressure

 • − ∇p = pressure gradient
 • ∇φ  is ⊥  to lines of constant φ

∇iΑ
"#
=
∂Ax

∂x
+
∂Ay

∂y
+
∂Az
∂z

 Divergence of the vector function Α
"#

 
• positive when fluid is expanding; neg when...

 • The scalar ∇iΑ
"#

 is called the divergence of the 

vector field Α
"#

 b/c it is a measure of the tendency 

of the field lines of Α
"#

 to diverge or converge

∇ × Α
"#
=

i! j! k!

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

Curl of Α
"#

 • Curl is a measure of the tendency of a vector field
    to rotate at a point 

Curvilinear coordinates
x! i = fi x1, x2 , x3( ), i = 1,2,3;
x! = f x( ) = x! x( ) ⇒  vector form of above, where the function f x( )  prescribes 

one and only one value of x!  for each value of x  and is such
that the 3 coordinates are independent of eachother.


