

Integration of MGS TES FFSM eddies and MOC-observed dust storms, MY 24–26

$$c(x) = \Delta x / \Delta t,$$

John Noble^{1,2} Alison F. C. Bridger^{1,2} Jeffrey R. Barnes³, R. John Wilson², Melinda A. Kahre², Jeffery L. Hollingsworth², Robert M. Haberle², Bruce A. Cantor⁴

1. San José State University, 2. NASA/Ames Research Center, 3. Oregon State University, 4. Malin Space Science Systems

The various measures of comparison indicate a strong association between eddy phase speed and storm tween 45-60° S are associated (in part) with cold fronts, a characteristic of baroclinic eddies. We invite the modelling community to conduct high spatial and temporal resolution simulations to test this hypothesis.